Tính:
\(A=2\sin^215^o+\tan23^o-\cot67^o+2\sin^275^2-\frac{\cot37^o}{\tan53^o}\)
Tính \(A=3\sin^215^o+2\tan23^o-\frac{4\cot37^o}{2\tan53^o}+3\tan^275^o.\cos75^o\)
Giúp mình nha mình cần trước 10h
giúp với!!!!:
tính:
\(2.\cot37^o.\cot53^o+\sin^228^o-\frac{3\tan54^o}{\cot36^o}+\sin^262^o\)
Tính giá trị của biểu thức
A=\(\dfrac{sin^226^o+2cos^215^o+2cos^275^o+sin^264^o}{sin^255^o+sin^235^o+sin^242^o+sin^248^o}-\dfrac{tan81^o}{2cot9^o}\)
Chứng minh đẳng thức sau:
\(\dfrac{sin25^o}{sin65^o}+2\left(sin^215^o+sin^275^o\right)-tan25^o+4sin30^o=4\)
\(VT=\dfrac{\sin25^0}{\cos25^0}+2\left(\sin^215^0+\cos^215^0\right)-\tan25^0+4\cdot\dfrac{1}{2}\\ =\tan25^0+2\cdot1-\tan25^0+2=4\)
\(\sin^275^o+\sin^215^o-\cos^250^o-\cos^240^o+\cot45^o.\cot45^o\)
áp dụng \(sin^2a+\cos^2a=1\)
ta có \(\sin^275^o+sin^215^o-\cos^250^o-\cos^240^o+\)\(cot45^o.cot45^o\)\(=sin^275^o+\cos^275^o-\left(\cos^250^o+sin^250^o\right)\)\(+cot^245^o\)\(=1-1+1=1\)
vì đây là tam giác vuông, hai góc nhọn phụ nhau nên sin góc này bằng cosin góc kia
tính nhanh
A=\(sin^242^o+sin^243^o+sin^244^o+sin^245^0+sin^246^o+sin^247^o+sin^248^o\)
B=\(\cos^215^o-cos^225^o+cos^235^o-cos^245^o+cos^255^o-cos^265^o+cos^275^o\)
\(ADCT:\sin^2\alpha+\cos^2\alpha=1\)
\(A=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin45^0\)
\(A=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\frac{\sqrt{2}}{2}\)
\(A=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)
Câu b lm tương tự
bài 1: Tính giá trị của các biểu thức sau:
a, \(\cos^215^o+\cos^225^o+\cos^235^o+\cos^245^o+cos^255^o+cos^265^o+cos^275^o\)
b,\(\sin^210^o-sin^220^o-sin^230^o-sin^240^o-sin^250^o-sin^270^o+sin^280^o\)
c,\(\sin15^o+\sin75^o-cos15^o-cos75^o+\sin30^o\)
Giải giúp e vs m.n
a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)
=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)
=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)
b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)
=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)
=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)
c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)
Tính giá trị của biểu thức:
\(A=\frac{3\cos67^0}{2\tan23^0}-\frac{\cos^236^0+\cos^254^0-\cos^217^0-\cos^273^0}{\sin^224^0+\sin^266^0+\sin^215^0+\sin^275^0}\)
\(\sin^235^o+tan17^o+sin^255^o-cot73^o-\frac{cot47^o}{tan53^o}\)
không dùng máy túnh hãy tính
\(=cos^2\left(90^o-35^o\right)+sin^255^o+cot\left(90^o-17^o\right)-cot73^o-\frac{tan\left(90^o-47^o\right)}{tan53^o}\)
\(=cos^255^o+sin^255^o+cot73^o-cot73^o-\frac{tan53^o}{tan53^o}\)
\(=1-1=0\)