Những câu hỏi liên quan
minh nguyen
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 19:30

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

Bình luận (2)
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 21:23

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Bình luận (0)
Nguyễn Phương Thảo
Xem chi tiết
Đàm Minh Quang
Xem chi tiết
kagamine rin len
28 tháng 2 2017 lúc 19:38

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

Bình luận (0)
Luân Đặng
Xem chi tiết
Phùng Minh Quân
23 tháng 1 2020 lúc 17:34

\(A=\frac{\frac{1}{2}a^2\left(\sqrt[3]{b}+\sqrt[3]{c}+1\right)\left[\left(\sqrt[3]{b}-\sqrt[3]{c}\right)^2+\left(\sqrt[3]{b}-1\right)^2+\left(\sqrt[3]{c}-1\right)^2\right]}{2\left(a+2\right)\left(a+\sqrt[3]{bc}\right)}\ge0\)

\(\Sigma_{cyc}\frac{a^2}{a+\sqrt[3]{bc}}=\Sigma_{cyc}A+\Sigma_{cyc}\frac{2\left(a-1\right)^2}{3\left(a+2\right)}+\frac{5}{6}\left(a+b+c\right)-1\ge\frac{5}{6}\left(a+b+c\right)-1=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Kudo Shinichi
23 tháng 1 2020 lúc 21:24

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

Chứng minh rằng : \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)

\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)

\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{cases}}\)

\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\left(đpcm\right)\)

Vì \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

Mà \(\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{3}{2}\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
Nalumi Lilika
Xem chi tiết
Hồng Quang
15 tháng 2 2021 lúc 10:44

Bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\) \(\left(\forall a,b,c>0\right)\)

chứng minh bổ đề: \(\Sigma_{cyc}\left(\dfrac{a^3}{a^3+b^3+c^3}\right)+\dfrac{1}{3}+\dfrac{1}{3}\ge3\sqrt[3]{\left(\Pi_{cyc}\dfrac{a^3}{a^3+b^3+c^3}\right).\dfrac{1}{3}.\dfrac{1}{3}}\)

hoán vị theo a,b,c

ta được: \(3\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)

mũ 3 hai vế ta có được bất đẳng thức bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\)

Áp dụng bất C-S: 

\(\sqrt{a^3+3b}+\sqrt{b^3+3c}+\sqrt{c^3+3a}\ge\sqrt{\left(1+1+1\right)\left(a^3+b^3+c^3+3a+3b+3c\right)}\)

\(\ge\sqrt{3.\left[3+3\left(a+b+c\right)\right]}=\sqrt{36}=6\)

Dấu "=" xảy ra tại a=b=c=1

Bình luận (0)
Nguyễn Vân Hương
Xem chi tiết
Agami Raito
Xem chi tiết
Akai Haruma
27 tháng 10 2019 lúc 0:01

Lời giải:

Xét hiệu: \(a^3+b^3-ab(a+b)=(a-b)^2(a+b)\geq 0, \forall a,b>0\)

\(\Rightarrow a^3+b^3\geq ab(a+b)\)

Áp dụng BĐT AM-GM:

\(a^3+b^3+2c^3\geq ab(a+b)+2c^3\geq 2\sqrt{ab(a+b).2c^3}=2\sqrt{4c^2(a+b)}=4c\sqrt{a+b}\)

Hoàn toàn tương tự:

\(a^3+2b^3+c^3\geq 4b\sqrt{a+c}; 2a^3+b^3+c^3\geq 4a\sqrt{b+c}\)

Cộng theo vế các BĐT vừa thu được:

\(\Rightarrow a^3+b^3+c^3\geq a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\sqrt[3]{2}$

Bình luận (0)
 Khách vãng lai đã xóa
tthnew
5 tháng 11 2019 lúc 19:02

Another way mặc dù không hay hiha

\(VP=\sqrt{\left(\Sigma a\sqrt{b+c}\right)^2}\le\sqrt{3\left[\Sigma_{cyc}ab\left(a+b\right)\right]}\)

\(\le\sqrt{3\left(a^3+b^3+c^3+3abc\right)}\)(BĐT Schur bậc 3)\(=\sqrt{3\left(a^3+b^3+c^3+6\right)}\)

Ta cần chứng minh \(\sqrt{3\left(a^3+b^3+c^3+6\right)}\le a^3+b^3+c^3\)(*)

\(\Leftrightarrow\left(a^3+b^3+c^3-6\right)\left(a^3+b^3+c^3+3\right)\ge0\)

BĐT này là đúng vì \(\left\{{}\begin{matrix}a,b,c>0\\a^3+b^3+c^3\ge3abc=6\end{matrix}\right.\) do đó (*) đúng.

Vậy BĐT đã được chứng minh.

Đẳng thức xảy ra khi \(a=b=c=\sqrt[3]{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Lê Trường Lân
Xem chi tiết
Tran Le Khanh Linh
16 tháng 5 2020 lúc 21:06

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
16 tháng 5 2020 lúc 21:07

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
Xem chi tiết