1. Tìm tập xác định của hàm số
a). y= \(\frac{5}{x^2-4x+3}\)
Tìm tập xác định của mỗi hàm số sau:
a) \(y = \frac{1}{{{x^2} - x}}\)
b) \(y = \sqrt {{x^2} - 4x + 3} \)
c) \(y = \frac{1}{{\sqrt {x - 1} }}\)
a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)
Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)
b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)
Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)
c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)
Tập xác định \(D = \left( {1; + \infty } \right)\)
Tìm tập xác định của hàm số a, y=x+3sinx/1-sinx b,y=4x^2-3/tan2x
Tìm tập xác định của hàm số:
a)\(y=\sqrt{9-x^2}-\frac{4x}{\sqrt{x^2-1}}\)
b)\(y=\frac{|x-2|}{\sqrt[3]{x}-\sqrt{x}}\)
Xét sự biến thiên của hàm số y = 4 x + 5 + x − 1 trên tập xác định của nó. Áp dụng tìm số nghiệm của phương trình 4 x + 5 + x − 1 = 3
A. 1 nghiệm duy nhất
B. 2 nghiệm
C. 3 nghiệm
Vô nghiệm
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
3. Tìm tập xác định của các hàm số sau:
a) \(y = 2^{x^2-1}\)
b) \(y = x^{-4}\)
c) \(y = (x-1)^{-3}\)
d) \(y = (x^2-1)^{4\pi}\)
e) \(y = \ln (4x^2-1)\)
f) \(y = \log_{3} (x^2-2)\)
h) \(y = (2x^2-4x)^{\frac{-1}{3}}\)
k) \(y = (2x-1)^{-4}\)
l) \(y = \log_{3} (x^2-1) + \ln (x-2) + e^{\frac{x}{x-1}}\)
`a)TXĐ: R`
`b)TXĐ: R\\{0}`
`c)TXĐ: R\\{1}`
`d)TXĐ: (-oo;-1)uu(1;+oo)`
`e)TXĐ: (-oo;-1/2)uu(1/2;+oo)`
`f)TXĐ: (-oo;-\sqrt{2})uu(\sqrt{2};+oo)`
`h)TXĐ: (-oo;0) uu(2;+oo)`
`k)TXĐ: R\\{1/2}`
`l)ĐK: {(x^2-1 > 0),(x-2 > 0),(x-1 ne 0):}`
`<=>{([(x > 1),(x < -1):}),(x > 2),(x ne 1):}`
`<=>x > 2`
`=>TXĐ: (2;+oo)`
1.Tập xác định của hàm số y= ( x2-1)2/3 là
2.hệ số góc của tiếp tuyến tại A (1;0) của đồ thị hàm số y = -x3+3x -1
3.tìm tập xác định của hàm số y= log2021(x-1)
4.bất pt 2x-1<5 có tập nghiệm là
Mong mn chỉ giúp ♡
tìm tập xác định của hàm số
Q) \(y=\frac{x+3}{\sqrt{\left|x-1\right|+\left|3-2x\right|+x-2}}\)
R) \(y=\frac{4x^2+1}{\sqrt{4-x\left|x\right|}}\)
Xét sự biến thiên của hàm số y = 4 x + 5 + x − 1 trên tập xác định của nó. Áp dụng tìm số nghiệm của phương trình 4 x + 5 + x − 1 = 4 x 2 + 9 + x
A. 1 nghiệm duy nhất
B. 2 nghiệm
C. 3 nghiệm
D. Vô nghiệm
Cho hàm số \(y=h\left(x\right)=\frac{a-3}{2}x+a-5\). (a là số cho trước)
a. Tìm tập xác định và vẽ đồ thị hàm số khi a=1
b. Xác định a để h(1/4)=-3
c. Xác định a để đồ thị hàm số song song với trục hoành
d. Xác định a để đồ thị hàm số somg song với đường thẳng y=x-1