Tìm các giá trị của m để hai đường thẳng:
\(\left(D_1\right):y=2x+3\) và \(\left(D_2\right):y=\left(m-1\right)x+2\)
a, Cắt nhau.
b, Song song với nhau.
c, Vuông góc với nhau.
Tìm các giá trị của m để hai đường thẳng:
\(\left(D_1\right):y=2x+3\) và \(\left(D_2\right):y=\left(m-1\right)x+2\)
a, Cắt nhau.
b, Song song với nhau.
c, Vuông góc với nhau.
Tìm các giá trị của m để hai đường thẳng song song với nhau:
\(\left(d_1\right):y=\left(2-m^2\right)x+m-5\) và \(\left(d_2\right)y=mx+3m-7\)
Tìm giá trị của $m$ để các đường thẳng
\(\left(d_1\right):mx+\left(m-1\right)y=3m+4;\)
\(\left(d_2\right):2mx+\left(m+1\right)y=m-4\)
cắt nhau, song song, trùng nhau.
Ta có: \(\hept{\begin{cases}\left(d_1\right):mx+\left(m-1\right)y=3m+4\\\left(d_2\right):2mx+\left(m+1\right)y=m-4\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(d_1\right):mx-3m-4=\left(1-m\right)y\\\left(d_2\right):2mx+4-m=-\left(m+1\right)y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(d_1\right):\frac{m}{1-m}x-\frac{3m+4}{1-m}=y\\\left(d_2\right):-\frac{2m}{m+1}x+\frac{m-4}{m+1}=y\end{cases}}\) khi đó ta có:
Để (d1) // (d2) thì: \(\hept{\begin{cases}\frac{m}{m-1}=\frac{2m}{m+1}\\\frac{3m+4}{m-1}\ne\frac{m-4}{m+1}\end{cases}}\Rightarrow m=3\)
Đề (d1) cắt (d2) thì: \(\frac{m}{m-1}\ne\frac{2m}{m+1}\Rightarrow m\ne\left\{0;3\right\}\)
Để (d1) trùng (d2) thì: \(\hept{\begin{cases}\frac{m}{m-1}=\frac{2m}{m+1}\\\frac{3m+4}{m-1}=\frac{m-4}{m+1}\end{cases}}\Rightarrow m=0\)
Để(d1)//(d2)\(\Rightarrow m\text{=}3\)
Để(d1)cắt(d2)\(\Rightarrow m\ne\left(0;3\right)\)
Để(d1)trùng(d2)\(\Rightarrow m\text{=}0\)
Cho hai đường thẳng \(y=-4x+m-1\left(d_1\right)\) và \(y=\dfrac{4}{3}x+15-3x\left(d_2\right)\)
a, Tìm m để đường thẳng \(\left(d_1\right)\) và (\(\left(d_2\right)\) cắt nhau tại một điểm C trên trục tung.
b, Với m ở trên hãy tìm tọa độ giao điểm A,B của 2 đường thẳng \(\left(d_1\right),\left(d_2\right)\) với trục hoành.
b: Để hai đường thẳng cắt nhau tại một điểm trên trục tung thì m-1=15
hay m=16
Cho các đường thẳng: \(\left(d_1\right)\) : \(y=\left(m-1\right)x\)
\(\left(d_2\right)\) : \(y=3x-1\)
Với giá trị nào của m thì hai đường thẳng \(\left(d_1\right)\) và \(\left(d_2\right)\)
a) Song song với nhau
b) Cắt nhau
c) Trùng nhau
\(\left(d_1\right):y=\left(m-1\right)x\left(ĐK:m\ne1\right)\)
\(\left(d_2\right):y=3x-1\)
a) Để (d1) và (d2) song song với nhau thì:
\(m-1=3\Rightarrow m=4\left(TM\right)\)
b) Để (d1) và (d2) cắt nhau thì:
\(m-1\ne3\Rightarrow m\ne4\)
c) Vì tung độ gốc của (d1) là 0, của (d2) là -1 nên hai đường thẳng trên không bao giờ trùng nhau
Bài 1: Cho 3 đường thẳng: \(\left(d_1\right)y=2x-1\); \(\left(d_2\right)y=3x-2\); \(\left(d_3\right)y=x+1\). Tìm m để 2 đường thẳng \(\left(d_1\right)\) và \(\left(d_2\right)\) cắt nhau tại một điểm nằm trên đường thẳng \(\left(d_3\right)\)
Trên mặt phẳng tọa độ Oxy, cho hai đường thẳng \(\left(d_1\right):y=\left(m^2+1\right)x-2\) và \(\left(d_2\right):y=\left(m+3\right)x-m-2\) (m là tham số). Tìm m để \(\left(d_1\right),\left(d_2\right)\) cắt nhau tại \(M\left(x_M;y_M\right)\) thỏa \(A=2020x_M\left(y_M+2\right)\) đạt giá trị nhỏ nhất.
Tình cờ hay cố ý mà dữ liệu bài toán có rất nhiều sự trùng hợp dẫn đến lời giải rất dễ dàng:
\(M\in d_1\Rightarrow y_M=\left(m^2+1\right)x_M-2\Rightarrow y_M+2=\left(m^2+1\right)x_M\)
\(\Rightarrow A=2020\left(m^2+1\right)x_M^2\ge0\)
\(A_{min}=0\) khi \(m=0\)
Khi đó điểm M là \(M\left(0;-2\right)\)
Tìm các giá trị của m để hai đường thẳng song song với nhau:
\(\left(d_1\right):y=\left(2-m^2\right)x+m-5\) và \(\left(d_2\right)y=mx+3m-7\)
Cho hai đường thẳng: \(y=\left(k-3\right)x-3k+3\left(d_1\right)\) và \(y=\left(2k+1\right)x+k+5\left(d_2\right)\)
Tìm các gt của k để:
a. \(\left(d_1\right)\) và \(\left(d_2\right)\) cắt nhau.
b. \(\left(d_1\right)\) và \(\left(d_2\right)\) cắt nhau 1 điểm trên trục tung.
c. \(\left(d_1\right)\) và \(\left(d_2\right)\) song song với nhau.
d. \(\left(d_1\right)\) và \(\left(d_2\right)\) vuông góc với nhau.
e. \(\left(d_1\right)\) và \(\left(d_2\right)\) trùng nhau.
https://loigiaihay.com/ly-thuyet-duong-thang-song-song-va-duong-thang-cat-nhau-c44a4461.html
Cái này không biết nhưng có sẵn trên mạng, cứ coi rồi làm thử