\(x^2-5x+36=8\sqrt{3x+4}\)
\(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
\(729x^4+8\sqrt{1-x^2}=36\)
\(x^2-5x+36=8\sqrt{3x+4}\)
tìm x
a)\(x^2-5x+36=8\sqrt{3x+4}\)
b)\(\sqrt{3x-2}=2-\sqrt{3}\)
Lời giải:
a) ĐKXĐ: $x\ge \frac{-4}{3}$
Ta có:
PT \(\Leftrightarrow x^2-5x+36-8\sqrt{3x+4}=0\)
\(\Leftrightarrow (x^2-8x+16)+(3x+4-8\sqrt{3x+4}+16)=0\)
\(\Leftrightarrow (x-4)^2+(\sqrt{3x+4}-4)^2=0\)
Dễ thấy \((x-4)^2\geq 0; (\sqrt{3x+4}-4)^2\geq 0, \forall x\geq \frac{-4}{3}\)
Do đó để tổng của chúng bằng $0$ thì \((x-4)^2=(\sqrt{3x+4}-4)^2=0\Leftrightarrow x=4\) (thỏa mãn)
Vậy..........
b) ĐK: $x\geq \frac{2}{3}$
\(\sqrt{3x-2}=2-\sqrt{3}\)
\(\Rightarrow 3x-2=(2-\sqrt{3})^2=7-4\sqrt{3}\)
\(\Rightarrow x=\frac{7-4\sqrt{3}+2}{3}=\frac{9-4\sqrt{3}}{3}\) (thỏa mãn)
Vậy.......
Lời giải:
a) ĐKXĐ: $x\ge \frac{-4}{3}$
Ta có:
PT \(\Leftrightarrow x^2-5x+36-8\sqrt{3x+4}=0\)
\(\Leftrightarrow (x^2-8x+16)+(3x+4-8\sqrt{3x+4}+16)=0\)
\(\Leftrightarrow (x-4)^2+(\sqrt{3x+4}-4)^2=0\)
Dễ thấy \((x-4)^2\geq 0; (\sqrt{3x+4}-4)^2\geq 0, \forall x\geq \frac{-4}{3}\)
Do đó để tổng của chúng bằng $0$ thì \((x-4)^2=(\sqrt{3x+4}-4)^2=0\Leftrightarrow x=4\) (thỏa mãn)
Vậy..........
b) ĐK: $x\geq \frac{2}{3}$
\(\sqrt{3x-2}=2-\sqrt{3}\)
\(\Rightarrow 3x-2=(2-\sqrt{3})^2=7-4\sqrt{3}\)
\(\Rightarrow x=\frac{7-4\sqrt{3}+2}{3}=\frac{9-4\sqrt{3}}{3}\) (thỏa mãn)
Vậy.......
Giải phương trình:
x2-5x+36=8\sqrt{3x+4}
dk \(x\ge-\frac{4}{3}\)
\(x^2-5x+4=8\sqrt{3x+4}-32\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=8\left(\sqrt{3x+4}-4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)-8\frac{\left(\sqrt{3x+4}-4\right)\left(\sqrt{3x+4}+4\right)}{\sqrt{3x+4}+4}=0\)
\(\left(x-1\right)\left(x-4\right)-8.\frac{3\left(x-4\right)}{\sqrt{3x+4}+4}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1-\frac{24}{\sqrt{3x+4}+4}=0\right)\)
đến đây để rồi tự làm nhé ^^
bài toán của mk k có -23 ở vế sau ạ
giải phương trình
a, \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
b, \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
c, \(2x^2+4x=\sqrt{\dfrac{x+3}{2}}\)
d, \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
e, \(729x^4+8\sqrt{1-x^2}=36\)
f, \(7x^2-10x+14=5\sqrt{x^4+4}\)
g, \(x^3+3x^2-3\sqrt[3]{3x+5}=1-3x\)
h, \(\sqrt{4-3\sqrt{10-3x}}=x-2\)
i, \(\sqrt{x-1}+\sqrt{x^2-1}=\sqrt{x^2-5x+4}\)
a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)
\(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)
\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)
pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)
\(\Leftrightarrow t^2-2t-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)
suy ra tìm đc x
câu b đặt t =\(3x^2+5x+8\)
ta có pt \(\Leftrightarrow\sqrt{t}-\sqrt{t-7}=1\)
\(\Rightarrow t=16\)
\(\Leftrightarrow3x^2+5x+8=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{3}\end{matrix}\right.\)
giải pt: \(x^2-5x+36=8\sqrt{3x+4}.\)
\(x^2-5x+36=8\sqrt{3x+4}\)
\(\Leftrightarrow x^2-5x+36-8\sqrt{3x+4}=0\)
\(\Leftrightarrow\left(-8\sqrt{3x+4}+32\right)+\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow-8\left(\sqrt{3x+4}-4\right)+\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow-8.\frac{3x+4-16}{\sqrt{3x+4}+4}+\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow-8.\frac{3x-12}{\sqrt{3x+4}+4}+\left(x-1\right)\left(x-4\right)=0\)
\(\left(x-4\right)\left(\frac{-24}{\sqrt{3x+4}+4}+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\\frac{-24}{\sqrt{3x+4}+4}+x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\-\frac{24}{\sqrt{3x+4}+4}+3+x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\-3.\frac{16-3x-4}{\left(\sqrt{3x+4}+4\right)^2}+\left(x-4\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\\left(x-4\right)\left[\frac{9}{\left(\sqrt{3x+4}+4\right)^2}+1\right]=0\end{cases}}\)
Mà \(\frac{9}{\left(\sqrt{3x+4}+4\right)^2}+1>0\forall x\) nên \(x-4=0\Rightarrow x=4\)
Vật PT có nghiệm duy nhất là \(x=4\)
1\(\sqrt{5+2\sqrt{8}}-\sqrt{5-2\sqrt{8}}\) 2)\(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}\) 3) \(\dfrac{\sqrt{x^2-5x+6}}{\sqrt{x-2}}\) 4)\(\dfrac{\sqrt{\left(x-4\right)^2}}{x^2-5x+4}\) 5) \(\dfrac{3x+1}{\sqrt{9x^2+6x+1}}\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)