Cho a, b thoả mãn
a+b = 2
C/m a^4 + b^4 > hoặc bằng 2
cho các số thực a,b,c thoả mãn a+b+c=6 ,0<hoặc bằng a,b,c <hoặc bằng 4.GTLN P=a^2+b^2+c^2+ab+bc+ac
hi mk cũng ra thế nhưng k chắc a,b,c=0,4,2 phải k bạn
có cách giải cụ thể k
cho a,b,c là số thực lớn hơn 0 , thoả mãn : ab + bc + ca + abc =< 4 ( nhỏ hơn hoặc bằng 4 )
chứng minh rằng a2 + b2 + c2 + a + b + c >= 2 ( ab + bc + ca )
cho các số a,b,c thoả mãn
\(\left\{{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2=1\end{matrix}\right.\)
Tính M=\(a^4+b^4+c^4\)
Có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=-1\) (do \(a^2+b^2+c^2=1\) )
\(\Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab.bc+2bc.ca+2ca.ab=\dfrac{1}{4}\)
\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\Leftrightarrow \left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\) (do \(a+b+c=0\))
Lại có: \(M=a^4+b^4+c^4\)
\(=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2 +b^2c^2+c^2a^2\right)\)
\(=1-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\) (do \(a^2+b^2+c^2=1\))
\(=1-2.\dfrac{1}{4}\)(do \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\))
\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy \(M=\dfrac{1}{2}\)
BT:
a,giải pt: (8x-4x^2-1)(x^2+2x+1)=4(x^2+x+1)
b,cho 2 số a,b thoả mãn a+b khác 0
CMR: a^2+b^2+(a^2+1/a+b)^2 lớn hơn hoặc bằng 2
\(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)
\(\Leftrightarrow8x^3+16x^2+8x-4x^4-8x^3-4x^2-x^2-2x-1=4x^2+4x+4\)
\(\Leftrightarrow11x^2+6x-4x^4-1=4x^2+4x+4\)
\(\Leftrightarrow11x^2+6x-4x^2-1-4x^2-4x-4=0\)
\(\Leftrightarrow7x^2+2x-4x^4-4=0\)
\(\Leftrightarrow\left(-4x^3-4x^2+3x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(-4x^2-8x-5\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Cho a,b,c là các số thực dương thoả mãn:
1/(a^2 +b^2+4). + 1/(b^2 + c^2 +4). + 1/(c^2 + a^2 +4) >= 2/3.
Từ đó hãy cmr:
a^2 +b^2 +c^2 + ab+bc+ac < hoặc bằng 6
Giúp mình nhé CảM Ơn nhiều
Cho 4 số tự nhiên a,b,c,d thoả mãn a<b lơn hơn hoặc bằng c <d
77<a nhỏ hơn hoạc bằng 81
77 lớn hơn hoặc bằng d <81
cho 3 số a,b,c thoả mãn 0 < hoặc= a,b,c<hoặc =2 và a+b+c=3
chứng minh a^2+b^2+c^2< hoặc= 5
Vì \(0\le a,b,c\le2\)nên:
\(abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow abc+2bc-abc+2ac-4c+2ab-4b-4a+8\ge0\)
\(\Leftrightarrow2bc+2ac+2ab-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)-12+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)\ge4\)
Do đó: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\le3^2-4=5\)
(Dấu "="\(\Leftrightarrow\)(a,b,c) là các hoán vị của (0,1,2))
C6. Cho các số thực dương thoả mãn: ab+1 nhỏ hơn hoặc bằng b Chứng minh rằng : ( a + (1/a^2) ) + ( b^2 + (1/b) ) lớn hơn hoặc bằng 9
\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)
Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)
Gọi vế trái của BĐT cần chứng minh là P:
\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)
\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)
Cho ba số thực dương a, b, c thoả mãn :a2+b2+c2=3 . Tìm giá trị nhỏ nhất của biểu thức:
\(M=\dfrac{a^5}{b^3+c^2}+\dfrac{b^5}{c^3+a^2}+\dfrac{c^5}{a^3+b^2}+a^4+b^4+c^4\)
\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a^4}{2}\ge3\sqrt[3]{\dfrac{a^9.\left(b^3+c^2\right)}{8\left(b^3+c^2\right)}}=\dfrac{3a^3}{2}\)
Tương tự và cộng lại:
\(\Rightarrow M-\dfrac{a^4+b^4+c^4}{2}+\dfrac{a^3+b^3+c^3}{4}+\dfrac{a^2+b^2+c^2}{4}\ge\dfrac{3}{2}\left(a^3+b^3+c^3\right)\)
\(\Rightarrow M\ge\dfrac{a^4+b^4+c^4}{2}+\dfrac{5}{4}\left(a^3+b^3+c^3\right)-\dfrac{3}{4}\)
Mặt khác ta có:
\(\dfrac{1}{2}\left(a^4+b^4+c^4\right)\ge\dfrac{1}{6}\left(a^2+b^2+c^2\right)^2=\dfrac{3}{2}\)
\(\left(a^3+a^3+1\right)+\left(b^3+b^3+1\right)+\left(c^3+c^3+1\right)\ge3\left(a^2+b^2+c^2\right)=9\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge9\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{15}{4}-\dfrac{3}{4}=...\)