Tính
a, \(\frac{\cos65}{\sin25}\)
b,\(\cot35-\cot55\)
Tính
a ) sin 25 ° cos 65 ° b ) tg 58 ° − cotg 32 °
(Gợi ý: Sử dụng tính chất lượng giác của hai góc phụ nhau)
a)
b) t g 58 ° – c o t g 32 ° = t g 58 ° – t g ( 90 ° – 32 ° ) = t g 58 ° – t g 58 ° = 0
Rút gọn các biểu thức :
a/ \(\frac{2cos^2\alpha-1}{sin\alpha+cos\alpha}\)
b/ \(\frac{sin25+cos70}{sin20+cos65}\)
\(a,=\frac{2cos^2\alpha-cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}\\ =\frac{cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}\\ =cos\alpha-sin\alpha\)
\(b,sin25=cos65;cos70=sin20;Khiđó:B=1\)
Tính :
a) \(\dfrac{\sin25^0}{\cos65^0}\)
b) \(tg58^0-cotg32^0\)
a)
b)
Nhận xét: Cách giải như trên là dựa vào định lý: nếu hai góc phụ nhau thì sin của góc này bằng côsin của góc kia, tang của góc này bằng côtang của góc kia.
a) sin25∘cos65∘=sin25∘sin25∘=1sin25∘cos65∘=sin25∘sin25∘=1
b) tg58∘−cotg32∘=tg58∘−tg58∘=0tg58∘−cotg32∘=tg58∘−tg58∘=0
Nhận xét: Cách giải như trên là dựa vào định lý: nếu hai góc phụ nhau thì sin của góc này bằng côsin của góc kia, tang của góc này bằng côtang của góc kia.
Ting giá trị biểu thức: \(\frac{\sin25^o+\cos70^o}{\sin20^o+\cos65^o}\)
GIÚP MÌNH VỚI M.M!!!
Ta có sin25°=cos65°
cos70°=20sin°
=> sịn25°+cos70°/sin20°+cos65°=cos65°+sin20°/sin20°+cos65°=1
a) rút gọn biểu thức: \(\frac{2cos^2a-1}{sin.a+cos.a}\)
b) tính gía trị biểu thức: \(\frac{sin25+cos70}{sin20+có65}\)
b) \(\frac{\sin25+\cos70}{\sin20+\cos65}\)
xét tam giác vuông có : sin a= cos b => cos 70 = sin (90 -70) <=> cos 70 = sin 20
cos 65 =sin 25
<=> \(\frac{\sin25+\cos70}{\sin20+\cos65}\)
=\(\frac{\sin25+\sin20}{\sin20+\sin25}=1\)
\(\frac{2\cos^2\cdot a-1}{\sin a+\cos a}=\frac{2\cos^2a-\left(\sin^2+\cos^2\right)}{\sin a+\cos a}\)
vì \(\sin^2a+\cos^2a=1\)
=\(\frac{\cos^2a-\sin^2a}{\sin a+\cos a}=\frac{\left(\cos a-\sin a\right)\left(\cos a+\sin a\right)}{\sin a+\cos a}\)
=\(\cos a-\sin a\)
Bài 1: Tính
a) A = \(\frac{sin35^0}{cos35^0}.tan55^0+\frac{cos55^0}{sin55^0}.cot35^0\)
b) B = \(tan67^0+cos^216^0-cot23^0+cos^274^0-\frac{cot37^0}{tan53^0}\)
Tính giá trị ủa các biểu thức B= cos45° + cos25° + cos45° + cos65° + cos85°;
So sánh:
a) tg250 và sin250
b)cotg320 và cos320;
c) tg450 và cos450;
d) cotg600 và sin300.
Bài a) cô giáo mình giải như thế này này:
tg250 =\(\frac{\sin25}{cos25}\) cos 25 < 1
=> tg250 > sin250
Vì sao lại tg250 =\(\frac{\sin25}{cos25}\) giải thích giúp mình với, cảm ơn!
a) ta có tan 25 =sin25 phần cos25 và sin25=sin25 phần 1 suy ra sin25 phần cos25> sin25 phần 1 (vì cos25 <1) vậy tan25>sin25( điều 1)
b) ta có cot32= cos32 phần sin32 và cos32= sos32 phần 1 suy ra cos32 phần sin32>cos32 phần 1(vì sin32<1) vậy cot32>cos32
c) ta có tan45=sin45 phần cos45 và cos45= cos45= cos45 phần 1 suy ra sin45 phần cos45> cos45 phần 1(vì cos45<1) vậy tan45>cos45
d) ta có cot60=cos60 phần sin60 và sin30 =cos60 phần 1 suy ra cos60 phần sin60> cos60 phần 1 (vì sin60 <1) vậy cot60>sin30
trong bài 14 (sgk -77) có yêu cầu chứng minh tan = sin phần cos đó bạn
Tính \(A=\sin^225^o+sin^265^{6o}-tan35^o+cot55^o-\frac{cot32^o}{tan58^o}\)
\(A=sin^225+cos^2\left(90-65\right)-tan35+tan\left(90-55\right)-\frac{cot32}{cot\left(90-58\right)}\)
\(=sin^225+cos^225-tan35+tan35-\frac{cot32}{cot32}\)
\(=1-0-1=0\)