Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Duy
Xem chi tiết
 
Xem chi tiết
Dương Lam Hàng
16 tháng 7 2018 lúc 14:56

Ta có: \(\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}\)

Vì (2n+1) chia hết cho 2n+1 => (2n+1)(n-1) chia hết cho 2n+1

Nên để 2n2 - n + 2 chia hết cho 2n + 1 thì 3 phải chia hết cho 2n+1

=> \(2n+1\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)

Nếu 2n + 1 = 1 thì n = 0 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = -1 thì n = -1 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = 3  thì n = 1 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = -3 thì n = -2 (thỏa mãn x thuộc Z)

Vậy để 2n2 - n + 2 chia hết cho 2n + 1 <=> n = {0;-1;-2;1}

I don
16 tháng 7 2018 lúc 14:59

ta có: 2n2 - n + 2 chia hết cho 2n + 1

=> 2n2 + n - 2n + 2 chia hết cho 2n + 1

n.(2n+1) - ( 2n + 1) + 3 chia hết cho 2n + 1

(2n+1).(n-1) + 3 chia hết cho 2n + 1

mà (2n+1).(n-1) chia hết cho 2n + 1

=> 3 chia hết cho 2n + 1

=>...

 ๖ۣۜFunny-Ngốkツ
Xem chi tiết
dam quang tuan anh
1 tháng 11 2017 lúc 21:17

2n² - n + 2. │ 2n + 1 
2n² + n....... ├------------ 
------------------ I n - 1 
.......-2n + 2 
.......-2n - 1 
_____________ 


Để chia hết thì: 3 phai chia hết cho ( 2n + 1) 

hay (2n + 1) la ước của 3 
Ư(3) = {±1 ; ±3} 
______________________________ 
+) 2n + 1 = 1 <=> n = 0 
+) 2n + 1 = -1 <=> n = -1 
+) 2n + 1 = 3 <=> n = 1 
+) 2n + 1 = -3 <=> n = -2 


Vậy n ∈{0;-2 ; ±1}

dam quang tuan anh
1 tháng 11 2017 lúc 21:18

Ta có: 2n2 – n + 2 : (2n + 1) 

2015-10-01_000139 

Ta có: n ∈ Z và 2n2 – n + 2 chia hết cho 2n +1 thì 2n + 1 là ước của 3. Ước của 3 là ±1; ± 3 

Khi 2n + 1 = 1 ⇔2n = 0 ⇔ n = 0 
Khi 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1 
Khi 2n + 1 = 3 ⇔ 2n = 2 ⇔ n – 1 
Khi 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2 
Vậy, n = 0 hoặc n = – 1 hoặc n = 1 hoặc n = -2.

nguyen ngoc khanh linh
Xem chi tiết
Kiệt Nguyễn
17 tháng 7 2019 lúc 10:12

\(P=\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-\left(2n-2\right)}{2n+1}=n-\frac{2n-2}{2n+1}\)

\(=n-\frac{2n+1-3}{2n+1}=n-1+\frac{3}{2n+1}\)

Để P nguyên thì \(\frac{3}{2n+1}\)nguyên

\(\Leftrightarrow3⋮\left(2n+1\right)\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng:

\(2n+1\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(0\)\(-1\)\(1\)\(-2\)

Vậy \(n\in\left\{-2;-1;0;1\right\}\)

T.Ps
17 tháng 7 2019 lúc 10:22

#)Giải :

\(P=\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}\)

\(=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}=n-1+\frac{3}{2n+1}\)

\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow\orbr{\begin{cases}2n+1=-3\\2n+1=1\end{cases}\Rightarrow\orbr{\begin{cases}n=-2\\n=-1\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}2n+1=1\\2n+1=3\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}}\)

Vậy \(n\in\left\{-2;-1;0;1\right\}\)

Cỏ dại
Xem chi tiết
shitbo
11 tháng 12 2018 lúc 20:39

\(2n^2-n+2⋮2n+1\Leftrightarrow2n^2-2n^2-n-n+2⋮2n+1\)

\(\Leftrightarrow-2n+2⋮2n+1\Leftrightarrow1⋮2n+1\Leftrightarrow n\in\left\{-1;0\right\}\)

Ngoc Anhh
Xem chi tiết
Lê Ng Hải Anh
26 tháng 8 2018 lúc 10:52

Ta có: \(\left(2n-1\right)^3-2n+1=\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left(4n^2-4n+1-1\right)\)

\(=4n\left(n-1\right)\left(2n-1\right)\)

Ta có: \(4⋮4\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮4\) (1)

Mà \(n\left(n-1\right)\) là 2 số tự nhiên liên tiếp nên chia hết cho 2

\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮2\) (1)

Từ (1) và (2):

\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮8\)

Hay: \(A⋮8\)

=.= hok tốt!!

Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 21:39

\(1,\)

\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)

Với \(n=k+1\)

\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)

Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)

Theo pp quy nạp ta được đpcm

\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)

Với \(n=k+1\)

\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)

Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)

Theo pp quy nạp ta được đpcm

Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 21:45

\(1,\)

\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)

Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)

\(d,D=1^n+2^n+5^n+8^n\)

Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)

Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 21:55

\(2,\)

Ta thấy:\(1+2+...+2002=\left(2002+1\right)\left(2002-1+1\right):2=2003\cdot2002:2⋮11\left(2002⋮11\right)\)

Do đó \(1^{2002}+2^{2002}+...+2002^{2002}⋮1+2+...+2002⋮11\)

 

Yaya Nguyễn
Xem chi tiết
Trần Thanh Phương
23 tháng 10 2018 lúc 20:21

2n2 + 5n - 1 | 2n - 1

2n2  - 2n      | 2n + 7

-----------------

        7n - 1

        7n - 7 

------------------

               6

Để 2n2 + 5n - 1 chia hết cho 2n - 1 thì 6 phải chia hết cho 2n - 1

Hay 2n-1 thuộc Ư(6) = { 1; 2; 3; 6; -1; -2; -3; -6 }

Ta có bảng :

2n-11236-1-2-3-6
n11,523,50-0,5-1-2,5

Vậy n thuộc { 1; 1,5; 2; 3,5; 0; -0,5; -1; -2,5 }

logo212
Xem chi tiết
Võ Đông Anh Tuấn
13 tháng 11 2016 lúc 20:38

2n2 + 3n + 3 | 2n-1

- 2n2 - n | n + 2

0 + 4n +3

- + 4n -2

+ 5

Để phép chia tren là phép chia hết thì :

\(5⋮2n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

+ ) 2n - 1 = 1

2n = 2

n = 1

+ ) 2n - 1 = -1

2n = 0

n = 0

+ ) 2n - 1 = 5

2n = 6

n = 3

+ ) 2n - 1 = -5

2n = -4

n = -2

Vậy x \(\in\) { -2;3 ;1 ; 0 }