\(\sqrt{2x+\sqrt{4x+1}}+\sqrt{2x-\sqrt{4x-1}}\)
Rút gọn
Rút gọn : \(A=\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
ĐK: \(x\ge\frac{1}{4}\)
Ta có \(A^2=4x+2\sqrt{4x^2-\left(4x-1\right)}=4x+2\sqrt{\left(2x-1\right)^2}\)
Với \(x\ge\frac{1}{2},A=4x+2\left(2x-1\right)=8x-2\)
Do \(A\ge0\) nên \(A=\sqrt{8x-2}\)
Với \(\frac{1}{4}\le x< \frac{1}{2},A^2=4x+2\left(1-2x\right)=2\)
Do \(A\ge0\) nên \(A=\sqrt{2}\)
rút gọn A=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
B=\(53+20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)
Rút gọn \(\sqrt{sin^4x+cos^2x}+\sqrt{sin^2x+cos^4x}\)
\(\sqrt{sin^4x+cos^2x}+\sqrt{sin^2x+cos^4x}\)
\(=\sqrt{\left(1-cos^2x\right)^2+cos^2x}+\sqrt{sin^2x+cos^4x}\)
\(=\sqrt{1-cos^2x+cos^4x}+\sqrt{sin^2x+cos^4x}\)
\(=\sqrt{sin^2x+cos^4x}+\sqrt{sin^2x+cos^4x}\)
\(=2\sqrt{sin^2x+cos^4x}\)
rút gọn:2x-\sqrt(4x^(2)+4x+1)
A=2x-|2x+1|
TH1: x>=-1/2
A=2x-2x-1=-1
TH2: x<-1/2
A=2x+2x+1=4x+1
Bài 1 : Cho biểu thức : A = 2x + \(\frac{\sqrt{9x^2-6x+1}}{1-3x}\)
a. Rút gọn A
b.Tính giá trị A khi x = -3
Bài 2 : Rút gọn :
a. \(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)(với a \(\ge\)1)
b. \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)(với \(\frac{1}{4}< x< \frac{1}{2}\))
Bài 3 : Giải PT:
\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)= \(\sqrt{6}\)
rút gọn \(\dfrac{2x+\sqrt{2}}{4x^2+4\sqrt{2x}+\sqrt{2}}\)
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
Câu 1 đề vẫn có vấn đề:
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)
\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)
Có thể coi như ko thể rút gọn tiếp
2.
\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)
\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)
\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)
\(=2\left(cos^2x+sin^2x\right)+2=4\)
\(P=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}+\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
Rút gọn P
P = \(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}+\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
P = \(\frac{\sqrt{x}-4x-1+4x}{1-4x}:\left(\frac{1+2x-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)
P = \(\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{1+2x-4x-2\sqrt{x}-1+4x}\)
P = \(\frac{\sqrt{x}-1}{2x-2\sqrt{x}}\)
P = \(\frac{\sqrt{x}-1}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)
Rút gọn: A = \(\sqrt{2x+\sqrt{4x+1}}+\sqrt{2x-\sqrt{4x-1}}\)\(\left(\frac{1}{4}