Tập ngiệm của pt (m+3)x^2-3(m-1)x+2m-6=0 (m khác -3)
Giải giúp với 😭😭
Help me😭😭
Cho pt x^2-2mx-2m-5=0( m là tham số)
1/ CMR pt luôn có 2 nghiệm phân biệt với mọi giá trị của m
2/ tìm m để | x1-x2 | đạt giá trị nhỏ nhất ( x1,x2 là nghiệm của pt)
1 ) \(\Delta=\left(-2m\right)^2-4.\left(-5\right)=4m^2+20>0\)
Vì \(\Delta>0\) . Nên phương trình luôn có hai nghiệm phân biệt với mọi m
2 ) Theo định lý vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=-2m-5\end{matrix}\right.\)
Đặt : \(A=\left|x_1-x_2\right|\)
\(\Rightarrow A^2=\left(x_1-x_2\right)^2\)
\(=x_1^2+x_2^2-2.x_1.x_2\)
\(=\left[\left(x_1+x_2\right)^2-2.x_1.x_2\right]-2.x_1.x_2\)
\(=\left[\left(2m\right)^2-2.\left(-2m-5\right)\right]-2.\left(-2m-5\right)\)
\(=4m^2+4m+10+4m+10\)
\(=4m^2+8m+20\)
\(=4\left(m^2+2m+5\right)\)
\(=4\left[\left(m^2+2m+1\right)+4\right]\)
\(=4\left[\left(m+1\right)^2+4\right]\)
Do : \(\left(m+1\right)^2\ge0\Rightarrow4\left[\left(m+1\right)^2+4\right]\ge16\)
Hay \(A^2\ge16\Leftrightarrow A\ge4\)( Vì \(A\ge0\) )
Vậy GTNN của \(\left|x_1-x_2\right|\) là 4 khi \(\left(m+1\right)^2=0\Leftrightarrow m=-1\)
Chúc bạn học tốt !!
den ta =4m^2 +20>0 <luon dung voi moi x thuoc R>
ket luan pt luon co 2 nghiem phan biet voi moi m
b, voi moi m pt co 2 nghiem phan biet
theo viet x1+x2=2m
x1nh2 = -5
[|x1-x2|]^2=x1^2+x2^2-2x1x2
=[x1+x2]^2-4x1x2
=4m^2+20lon hon hoac bang 20
dau bang xay ra khi chi khi m =0
Cho phân thức
M=[(x-1)^2/3x+(x-1)^2-(1-2x^2+4x)/(x^3-1)+1/x-1]:x^2+x/x^3+x
a tìm đkxđ
b tìm giá trị của x để biểu thức bằng 0
c tìm giá trị của x để |M|=1
mn giúp mình với 😭😭😭
Cho pt x^2-2mx+m-2=0
a. CMR pt luôn có 2 nghiệm phân biệt với mọi m
b. Gọi x1,x2 là nghiệm của pt. Tìm m để biểu thức M=-24/x1^2+x2^2-6x1x2
Giúp em với😭😭😭
\(a,\) Ta có:
Δ' \(=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0 \) ∀\(m\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi \(m\)
vào lớp 10 chúc các bạn hoc gỏi toán nhe. ai học lớp 10 . giải giúp mình bài này nhe.
tìm m đẻ pt có 4 ngiệm: \(x^4-2x^3-\left(2m-1\right)x^2+2\left(m+1\right)x+m^2+m=0^{ }\)
SỐ NGUYÊN
tìm x:
[x-1] = -3 12-3. [x-1] =6 12-3.[x-1]=9 [x-1]=[-17] - [15]
[x-1]=[-2]^3 - [-3]^2 [x-1]=[x-9] [2x-1]=[x-5] [x+3]=[x-9]
Nhanh lên!!!!!!!!!!!Mai mik thi Toán đấy!!!😭😭😭😭😭
Ta có \(\Delta=b^2-4ac=\left(-\left(m+5\right)\right)^2-4.\left(2m+6\right)=m^2+10m+25-8m-24=m^2+2m+1=\left(m+1\right)^2\)
Ta có (m+1)2 >= 0 với mọi m => \(\Delta>=0\) Do đó pt đã cho luôn có nghiệm với mọi m
Asp dụng hệ thức viet ta có x1+x2=-b/a =m+5 x1.x2 = c/a =2m+6
TA CÓ X13+X23=35 <=>(x1+x2)(\(x_1^2-x_1x_2+x_{2^2}\)) -35=0 <=>(x1 +x2) ((x1+x2)^2-2x1x2-x1x2 )-35=0 <=> (m+5) ((m+5)^2-3.(2m+6))-35=0 đến ddaaay tự làm nhá lười gõ rồi
cho pt: \(x^2-\left(2m-1\right)x+m^2-1=0\) (1)
a) tìm điều kiện của m để pt (1) có 2 nghiệm phân biệt
b) tìm m để 2 ngiệm \(x_1\), \(x_2\) của pt (1) t/m: \(\left(x_1-x_2\right)^2=x_1-3x_2\)
giúp mk vs mk cần gấp
a. Phương trình có 2 nghiệm phân biệt khi:
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m>0\)
\(\Rightarrow m< \dfrac{5}{4}\)
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=x_1-3x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)
\(\Leftrightarrow x_1-3x_2=5-4m\)
Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\4x_2=6m-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+1}{2}\\x_2=\dfrac{3m-3}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=m^2-1\)
\(\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3m-3}{2}\right)=m^2-1\)
\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\) (thỏa mãn)
Tìm x
a)4(x+3)(3x-2)-3(x+1)(4x-1)=-27
b)(x+1)(3x²-x+1)+x²(4-3x)=5/2
c)2(x-2)(x+2)+4(x-2)(x+1)+(x+2)(8+5x)=0
d)(2x+1)(5x-1)=20x²-16x-1
😭😭😭😭😭
a: \(\Leftrightarrow\left(4x+12\right)\left(3x-2\right)-\left(3x+3\right)\left(4x-1\right)=-27\)
\(\Leftrightarrow12x^2-8x+36x-24-\left(12x^2-3x+12x-3\right)=-27\)
\(\Leftrightarrow12x^2+28x-24-12x^2-9x+3=-27\)
\(\Leftrightarrow19x-21=-27\)
=>19x=-6
hay x=-6/19
b: \(\left(x+1\right)\left(3x^2-x+1\right)+x^2\left(4-3x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow3x^3-x^2+x+3x^2-x+1+4x^2-3x^3=\dfrac{5}{2}\)
\(\Leftrightarrow6x^2+1=\dfrac{5}{2}\)
\(\Leftrightarrow6x^2=\dfrac{3}{2}\)
\(\Leftrightarrow x^2=\dfrac{3}{12}=\dfrac{1}{4}\)
=>x=1/2 hoặc x=-1/2
c: \(\Leftrightarrow2\left(x^2-4\right)-4\left(x^2-x-2\right)+\left(5x+8\right)\left(x+2\right)=0\)
\(\Leftrightarrow2x^2-8-4x^2+4x+8+5x^2+10x+8x+16=0\)
\(\Leftrightarrow3x^2+22x+16=0\)
\(\text{Δ}=22^2-4\cdot3\cdot16=292>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-22-2\sqrt{73}}{6}=\dfrac{-11-\sqrt{73}}{3}\\x_2=\dfrac{-11+\sqrt{73}}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow20x^2-16x-1=10x^2-2x+5x-1\)
\(\Leftrightarrow10x^2-19x=0\)
=>x(10x-19)=0
=>x=0 hoặc x=19/10
a) Giải pt:
x2-7x+20 = 0
b) Chopt ẩn x
x3 + ax2 - 4x -4 = 0
+) Xác định a để pt có 1 ngiệm x=1
+) Vs a vừa tìm được, tìm các ngiệm còn lại của pt
a) \(x^2-7x+20=0\)
\(\Delta=b^2-4ac=\left(-7\right)^2-4.1.20=-31\)
\(\Rightarrow\)Phương trình vô nghiệm
Cho mình sửa chút thì tính được
\(x^2-9x+20\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\x-4=0\Leftrightarrow x=4\end{matrix}\right.\)