Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
em ơi
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 2021 lúc 17:07

\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)

\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

\(\Rightarrow x-y=1\Rightarrow P=1\)

\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)

\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)

\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)

Thanh Huyền Nguyễn
Xem chi tiết
Lê Đoàn Phương Uyên
13 tháng 1 2016 lúc 21:23

Bạn chỉ mình cách viết phân số đi, mình làm ra luôn cho. 

Nguyễn Huệ Lam
31 tháng 1 2016 lúc 8:50

vào chữ fx rồi chọn biểu tượng phân số là xong

Park Chanyeol
28 tháng 7 2016 lúc 12:48

mấy bài này cũng hơi khó

Bùi Ngọc Ánh
Xem chi tiết
dsadasd
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 3 2021 lúc 5:30

\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)

\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)

\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)

\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))

\(P_{max}=6\) khi \(x=y=3\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)

\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)

\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)

\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))

\(\Rightarrow x+y\ge4\)

\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị

Trương Huy Hoàng
30 tháng 3 2021 lúc 21:40

Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)

\(\Leftrightarrow\) P = x + y  = \(\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)

Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:

\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24

\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0

\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)

\(\Rightarrow\) -4 \(\le\) P \(\le\) 6

Vậy ...

Chúc bn học tốt!

Nguyễn Hương Ly
Xem chi tiết
Lê Song Phương
Xem chi tiết
Xyz OLM
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Xyz OLM
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

trần kiên
Xem chi tiết
Thanh Tùng DZ
27 tháng 8 2019 lúc 14:57

ĐKXĐ : \(x\ge2;y\ge3\)

\(\Rightarrow S=\sqrt{x-2}+\sqrt{y-3}\ge1\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=2;y=4\\y=3;x=3\end{cases}}\)

trần thị anh thư
Xem chi tiết
Akai Haruma
18 tháng 6 2019 lúc 11:49

Lời giải:

Bổ sung ĐK $x,y\geq 0$ để các biểu thức có nghĩa.

a)

\(A=x+y-8\sqrt{x}-2\sqrt{y}-2019=(x-8\sqrt{x}+16)+(y-2\sqrt{y}+1)-2036\)

\(=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\)

Ta thấy \((\sqrt{x}-4)^2\geq 0; (\sqrt{y}-1)^2\geq 0\) với mọi \(x,y\geq 0\)

Do đó: \(A=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\geq -2036\)

Vậy GTNN của $A$ là $-2036$ khi \(\left\{\begin{matrix} \sqrt{x}-4=0\\ \sqrt{y}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=16\\ y=1\end{matrix}\right.\)

b)

\(B=x+y+12\sqrt{x}-4\sqrt{y}+19=(x+12\sqrt{x})+(y-4\sqrt{y}+4)+15\)

\(=x+12\sqrt{x}+(\sqrt{y}-2)^2+15\)

Ta thấy: \(x+12\sqrt{x}\geq 0; (\sqrt{y}-2)^2\geq 0, \forall x,y\geq 0\)

\(\Rightarrow B\ge 0+0+15=15\)

Vậy GTNN của $B$ là $15$ khi \(\left\{\begin{matrix} x+12\sqrt{x}=0\\ \sqrt{y}-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=0\\ y=4\end{matrix}\right.\)

c)

\(C=2x+y-10\sqrt{x}-6\sqrt{y}+2\sqrt{xy}+8\)

\(=(x+y+2\sqrt{xy})+x-10\sqrt{x}-6\sqrt{y}+8\)

\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+(x-4\sqrt{x})+8\)

\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+9+(x-4\sqrt{x}+4)-5\)

\(=(\sqrt{x}+\sqrt{y}-3)^2+(\sqrt{x}-2)^2-5\)

\(\geq 0+0-5=-5\) với mọi $x,y\ge 0$

Vậy GTNN của $C$ là $-5$ đạt tại \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-3=0\\ \sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=1\\ x=4\end{matrix}\right.\)

d)

\(D=2y+x-2\sqrt{x}-2\sqrt{y}+2\sqrt{xy}+2\)

\(=(y+x+2\sqrt{xy})+y-2\sqrt{x}-2\sqrt{y}+2\)

\(=(\sqrt{x}+\sqrt{y})^2-2(\sqrt{x}+\sqrt{y})+1+y+1\)

\(=(\sqrt{x}+\sqrt{y}-1)^2+y+1\)

\(\geq 0+0+1=1\) với mọi $x,y\geq 0$

Vậy GTNN của $D$ là $1$ khi \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-1=0\\ y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=0\\ x=1\end{matrix}\right.\)

Akai Haruma
28 tháng 7 2019 lúc 19:26

Lời giải:

Bổ sung ĐK $x,y\geq 0$ để các biểu thức có nghĩa.

a)

\(A=x+y-8\sqrt{x}-2\sqrt{y}-2019=(x-8\sqrt{x}+16)+(y-2\sqrt{y}+1)-2036\)

\(=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\)

Ta thấy \((\sqrt{x}-4)^2\geq 0; (\sqrt{y}-1)^2\geq 0\) với mọi \(x,y\geq 0\)

Do đó: \(A=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\geq -2036\)

Vậy GTNN của $A$ là $-2036$ khi \(\left\{\begin{matrix} \sqrt{x}-4=0\\ \sqrt{y}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=16\\ y=1\end{matrix}\right.\)

b)

\(B=x+y+12\sqrt{x}-4\sqrt{y}+19=(x+12\sqrt{x})+(y-4\sqrt{y}+4)+15\)

\(=x+12\sqrt{x}+(\sqrt{y}-2)^2+15\)

Ta thấy: \(x+12\sqrt{x}\geq 0; (\sqrt{y}-2)^2\geq 0, \forall x,y\geq 0\)

\(\Rightarrow B\ge 0+0+15=15\)

Vậy GTNN của $B$ là $15$ khi \(\left\{\begin{matrix} x+12\sqrt{x}=0\\ \sqrt{y}-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=0\\ y=4\end{matrix}\right.\)

c)

\(C=2x+y-10\sqrt{x}-6\sqrt{y}+2\sqrt{xy}+8\)

\(=(x+y+2\sqrt{xy})+x-10\sqrt{x}-6\sqrt{y}+8\)

\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+(x-4\sqrt{x})+8\)

\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+9+(x-4\sqrt{x}+4)-5\)

\(=(\sqrt{x}+\sqrt{y}-3)^2+(\sqrt{x}-2)^2-5\)

\(\geq 0+0-5=-5\) với mọi $x,y\ge 0$

Vậy GTNN của $C$ là $-5$ đạt tại \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-3=0\\ \sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=1\\ x=4\end{matrix}\right.\)

d)

\(D=2y+x-2\sqrt{x}-2\sqrt{y}+2\sqrt{xy}+2\)

\(=(y+x+2\sqrt{xy})+y-2\sqrt{x}-2\sqrt{y}+2\)

\(=(\sqrt{x}+\sqrt{y})^2-2(\sqrt{x}+\sqrt{y})+1+y+1\)

\(=(\sqrt{x}+\sqrt{y}-1)^2+y+1\)

\(\geq 0+0+1=1\) với mọi $x,y\geq 0$

Vậy GTNN của $D$ là $1$ khi \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-1=0\\ y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=0\\ x=1\end{matrix}\right.\)

Phạm Quang Nhật
Xem chi tiết