Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đào thị thanh hường
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 8:48

Lời giải:
\(A=1+3+(3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9)+...+(3^{46}+3^{47}+3^{48}+3^{49})\)

\(=4+3^2(1+3+3^2+3^3)+3^6(1+3+3^2+3^3)+....+3^{46}(1+3+3^2+3^3)\)

\(=4+3^2.40+3^6.40+....+3^{46}.40\)

\(=10(4.3^2+4.3^6+..+4.3^{46})+4\)

Vậy $A$ có tận cùng là $4$

 

Xem chi tiết

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

nguyentranvietanh
13 tháng 6 2019 lúc 15:34

em den lam

nguyenquocthanh
Xem chi tiết
PHẠM THỦY TIÊN
27 tháng 9 2021 lúc 19:02

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

Khách vãng lai đã xóa
Nguyễn Trúc Quỳnh
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
8 tháng 11 2023 lúc 22:33

`#3107.101107`

\(A=1+3+3^2+3^3+...+3^{101}\)

$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$

$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2)  + ... + 3^{99}(1 + 3 + 3^2)$

$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$

$A = 13(1 + 3^3 + ... + 3^{99})$

Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`

`\Rightarrow A \vdots 13`

Vậy, `A \vdots 13.`

Toru
8 tháng 11 2023 lúc 22:35

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)

Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)

nên \(A\vdots13\)

\(\text{#}Toru\)

tangocanh
22 tháng 10 lúc 20:16

10<×


PHAN THANH HAI NGOC
Xem chi tiết
Akai Haruma
12 tháng 9 2021 lúc 3:54

Lời giải:
$A=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{56}+3^{57}+3^{58}+3^{59})$

$=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+...+3^{56}(1+3+3^2+3^3)$

$=(1+3+3^2+3^3)(1+3^4+...+3^{56})$

$=40.(1+3^4+...+3^{56})\vdots 10$

Do đó chữ số tận cùng của $A$ là $0$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 2 2017 lúc 14:45

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2017 lúc 11:29

A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30

3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31

2A = 3A – A =  ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 )  –  ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )

2A =  3 31 - 1

A =  3 31 - 1 2

Ta có  3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243

với n ≥ 0 thì  3 4 n + 3 có chữ số tận cùng là 7.Vì  31 = 4.7 + 3 nên  3 31 có chữ số tận cùng là 7. Do đó  3 31 - 1 2  có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.

Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương

Chip Chep :))) 😎
Xem chi tiết

A = 32 + 33 + 34 +...+ 3101

A = 32.(1 + 3 + 32 + 33 +...+ 399)

A =32[(1+ 3+32+33) + (34+ 35+36+37)+...+ (396 + 397+ 398 + 399)

A = 32.[ 40 + 34.(1+ 3 + 32 + 33)+...+ 396.(1 + 3 + 32 + 33)

A = 32.[ 40 + 34. 40 + ...+ 396.40]

A = 32.40.[ 1 + 34+...+396

A = 3.120.[1 + 34 +...+ 396]

120 ⋮ 120 ⇒ A =  3.120.[ 1 + 34 +...+396] ⋮ 120 (đpcm)

Lê Thị Phương Linh
Xem chi tiết

a: Ta có: \(A=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\cdots+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+\cdots+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+\cdots+3^{119}\right)\) ⋮4

TA có: \(A=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\cdots+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+\cdots+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+\cdots+3^{118}\right)\) ⋮13

Ta có: \(A=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2+\cdots+3^8\right)+\left(3^9+3^{10}+\cdots+3^{16}\right)+\cdots+\left(3^{113}+3^{114}+\cdots+3^{120}\right)\)

\(=3\left(1+3+\cdots+3^7\right)+3^9\left(1+3+\cdots+3^7\right)+\cdots+3^{113}\left(1+3+\cdots+3^7\right)\)

\(=3280\left(3+3^9+\cdots+3^{113}\right)\)

\(=82\cdot40\cdot\left(3+3^9+\cdots+3^{113}\right)\) ⋮82

b: Ta có: \(A=82\cdot40\cdot\left(3+3^9+\cdots+3^{113}\right)\)

\(=10\cdot82\cdot4\cdot\left(3+3^9+\cdots+3^{113}\right)\) ⋮10

=>A có chữ số tận cùng là 0

c:

Sửa đề: 2A+3 là lũy thừa của 3

\(A=3+3^2+3^3+\cdots+3^{120}\)

=>\(3A=3^2+3^3+\cdots+3^{121}\)

=>\(3A-A=3^2+3^3+\cdots+3^{121}-3-3^2-\cdots-3^{120}\)

=>\(2A=3^{121}-3\)

=>\(2A+3=3^{121}\) là lũy thừa của 3