Tìm x,y nguyên để a)x+y+xy=5
b)x+2y+xy=y
c)2x+3y+4xy=-5
Tìm x,y \(\in Z\) để :
a)x+y+xy=5
b)x+2y+xy=5
c)2x+3y+4xy=-5
a) Ta có: x^2 + y^2 + xy = 7 <=> (x+y)^2 -2xy+xy=7 <=> (x+y)^2 - xy =7 (1)
x+y+xy=5 (2)
Đặt S=x+y, P=xy, điều kiện: S^2>=4P, ta có hệ mới:
(1) => S^2 -P=7(3)
(2) => S+p=5 <=> P=5-S (4)
giải ra S,P rồi đối chiếu điều kiện suy ra x,y.
Phân tích mỗi đa thức sau thành nhân tử
a)x^3-2x^2y+xy^2+xy
b)x^3+4x^2y+4xy^2-9x
c)x^3-y^3+x-y
d)4x^2-4xy+2x-y+y^2
e)9x^2-3x+2y-4y^2
f)3x^2-6xy+3y^2-5x+5y
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
a) Tìm x, y là số tự nhiên biết: xy + x + 2y = 5
b) Tìm x, y là số nguyên để xy + 2x + 2y = -16
a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)
Từ đó ta có :
\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\)
b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)
Lần lượt xét từng trường hợp , ta được :
(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)
a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)
Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)
Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;0\right)\)
b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)
tương tự giải 6 TH là được
a) Ta có xy+x+2y=x(y+1)+2(y+1-1)=x(y+1)+2(y+1)-2=(y+1)(x+2)-2=5 ===> (y+1)(x+2)=7
Lại có: 7=1 . 7=(y+1)(x+2)
Ta có bảng giá trị:
y+1 | 1 | 7 |
x+2 | 7 | 1 |
y | 0 | 6 |
x | 5 | -1 |
câu b bạn làm tuơng tự nha
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
a.4x^2y-3xy^2+xy+xy-x^2y+5xy^2
b.x^2+2y^2+3xy+x^2-3y^2+4xy
c.2x^y-3xy+4xy^2-5x^2y+2xy^2
d.(2x^3+3x^2-4x+1)-(3x+4x^3-5)
Tìm các cặp số (x,y) biết:
2xy+x+2y=5;xy+3x-3y=5
xy+2x+2y=16;x+xy+y=9
xy-3x-y=0;9xy+3x+3y=51(x,y thuộcN*) 2x-5y+5xy=14
\(\left\{{}\begin{matrix}2xy+x+2y=5\\xy+3x-3y=5\end{matrix}\right.\)
\(\Rightarrow2xy+x+2y=xy+3x-3y\)
\(\Rightarrow2xy+x+2y-xy-3x+3y=0\)
\(\Rightarrow\left(2xy-xy\right)+\left(x-3x\right)+\left(2y+y\right)=0\)
\(\Rightarrow xy-2x+3y=0\)
\(\Rightarrow xy-2x+3y-6=-6\)
\(\Rightarrow x\left(y-2\right)+3\left(y-2\right)=-6\)
\(\Rightarrow\left(x+3\right)\left(y-2\right)=-6\)
Xét ước là xong,mấy câu kia tương tự
Bài 1: Chứng minh mọi số nguyên x,y thì:
`a)B=x^3y^2-3x^2y+2y` chia hết `(xy -1)`
`b)C=xy(x^3 +2)-y(xy^3+2x)` chia hết `(x^2 + xy + y^2)`
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
Tìm số nguyên x,y biết :
a, ( x + 3 ).( 2Y - 1 ) = 5
b, xy + 2x - 3y = 8
b)xy+2x-3y=8
<=> xy+2x-3y-6=8-6
<=> x(y+2)-3(y+2)=2
<=> (y+2)(x-3)=2
Vì x,y nguyên => y+2; x-3 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Ta có bảng
x-3 | -2 | -1 | 1 | 2 |
x | 1 | 2 | 4 | 5 |
y+2 | -1 | -2 | 2 | 1 |
y | -3 | -4 | 0 | -1 |
tìm x, y là các số nguyên
a,xy-x+2y=5
b,2xy+6x-4=0
c,xy-2x=3y-4
d,x^2-y^2=91
giai gium minh nha cac ban