Những câu hỏi liên quan
Phạm Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 11 2019 lúc 10:25

1/ Ta có \(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy, BĐT tương đương:

\(a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b\)

2/ \(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+bd}\ge\frac{\left(a+b+c+d\right)^2}{2ac+2bd+ab+bc+cd+ad}\)

\(P\ge\frac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+ab+bc+cd+ad}\)

\(P\ge\frac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\)

Dấu "=" xảy ra khi \(a=b=c=d\)

Bình luận (0)
 Khách vãng lai đã xóa
Đinh Duy Anh
Xem chi tiết
Trà My
4 tháng 4 2017 lúc 17:26

lớp 6 làm thì hơi dài đấy, nếu bạn muốn thì có thể áp dụng các bất đẳng thức của lớp trên cho nhanh

Bình luận (0)
Quốc Bảo
Xem chi tiết
Kuro Kazuya
31 tháng 1 2017 lúc 3:04

Áp dụng BĐT \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\) với a , b > 0 ta có :

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a\left(d+a\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}=\frac{ad+a^2+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\frac{4\left(ad+a^2+bc+c^2\right)}{\left(a+b+c+d\right)^2}\) ( 1 )

\(\frac{b}{c+d}+\frac{d}{a+b}=\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}=\frac{ab+b^2+cd+d^2}{\left(a+b\right)\left(c+d\right)}\ge\frac{4\left(ab+b^2+cd+d^2\right)}{\left(a+b+c+d\right)^2}\) ( 2 )

Từ ( 1 ) và ( 2 ) cộng theo từng vế:

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Cần chứng minh rằng \(\frac{\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow2\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow2ab+2bc+2cd+2ad+2a^2+2b^2+2c^2+2d^2\ge a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2cd+2bd\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge2ac+2bd\)

\(\Rightarrow a^2-2ac+c^2+b^2-2bd+d^2\ge0\)

\(\Rightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\left(đpcm\right)\)

Vậy \(\frac{ab+bc+cd+ad+a^2+b^2+c^2+d^2}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge2\)

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)

Bình luận (0)
Thắng Nguyễn
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
minhduc
29 tháng 10 2017 lúc 8:37

 BĐT nesbit với n=4. 

chứng minh nó ko hề khó đâu: 
đặt VT =A đi .thì sử dụng BĐT bunhiacopxki ta có: 
A[a(b+c)+b(c+d)+c(d+a)+d(a+b)] 
>=(a+b+c+d)^2 
giờ ta chỉ cần chứng minh: 
(a+b+c+d)^2>=2a(b+c)+b(c+d)+c(d+a)+d(a... 
điều này <=> với:a^2+b^2+c^2+d^2>=2ac+2bd. 
diều này là hiển nhiên theo BĐT cô-si=>đpcm.MinA=2.

Bình luận (0)
Tran Le Khanh Linh
6 tháng 4 2020 lúc 20:42

Áp dụng BĐT \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\left(x;y>0\right)\)

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad++bc+c^2\right)}{\left(a+b+c+d\right)^2}\left(1\right)\)

Tương tự \(\frac{b}{c+b}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\left(2\right)\)

Cộng (1) với (2) \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}=\text{4B}\)

Cần chứng minh \(B\ge\frac{1}{2}\), BDDT này tương đương với

\(2B\ge1\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Ngọc Hoàng
Xem chi tiết
Nguyễn Phương Thảo
5 tháng 2 2020 lúc 16:34

Áp dụng BĐT bunhiacopxki cho 2 bộ số \(\left(\sqrt{a}.\sqrt{b+c};\sqrt{b}.\sqrt{d+c};\sqrt{c}.\sqrt{d+a};\sqrt{d}.\sqrt{a+b}\right)\)

và \(\left(\frac{\sqrt{a}}{\sqrt{b+c}};\frac{\sqrt{b}}{\sqrt{d+c}};\frac{\sqrt{c}}{\sqrt{d+a}};\frac{\sqrt{d}}{\sqrt{a+b}}\right)\), ta được:

\(\left[a\left(b+c\right)+b\left(d+c\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)\(\left(\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\right)\)\(\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\)\(\ge\frac{\left(a+b+c+d\right)^2}{ab+ac+bd+bc+cd+ac+ad+bd}\)(1)

Ta có \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(luôn đúng)

Do đó: \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)(2)

Từ (1) và (2) suy ra ĐPCM

Dấu "=" xảy ra khi và chỉ khi a=b=c=d

Bình luận (0)
 Khách vãng lai đã xóa
Thanh Tùng DZ
5 tháng 2 2020 lúc 16:36

Áp dụng BĐT : \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với x,y > 0

Ta có : \(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)

Tương tự : \(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)

Cần chứng minh : \(\frac{a^2+b^2+c^2+d^2+ad+bc+ab+cd}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

Dấu "=" xảy ra khi a = c ; b = d

Vậy ....

Bình luận (0)
 Khách vãng lai đã xóa
Agatsuma Zenitsu
5 tháng 2 2020 lúc 16:40

Ta có: \(\frac{a}{x}+\frac{b}{y}\ge\frac{\left(a+b\right)^2}{xy}\)

Lại có: \(\frac{a}{b+c}+\frac{d}{a+b}\)

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+bc+bd+ca+cd+da+db}\)

Ta chứng minh: \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+ca+cd+da+db\right)\)

\(\Leftrightarrow\left(a+c\right)^2+2\left(a+c\right)\left(b+d\right)+\left(b+d\right)^2\ge2\left(a+c\right)\left(b+d\right)+4ac+4bd\)

\(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\ge4ac+4bd\)(đúng)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\left(đpcm\right)\)

Dấu " =  "xảy ra \(\Leftrightarrow a=b=c=d\)

Bình luận (0)
 Khách vãng lai đã xóa
Làm gì mà căng
Xem chi tiết
Kudo Shinichi
10 tháng 10 2019 lúc 17:36

Áp dụng BĐT Cauchy Schwarz dạng Engel và BĐT AM - GM ta có :

\(M=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)

\(=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ac}+\frac{d^2}{ad+bd}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{ad+bc+cd+ab+2ac+2bd}\)

\(=\frac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+2ac+2bd}\)

\(\ge\frac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+a^2+b^2+c^2+^2}\)

\(=\frac{2\left(a+b+c+d\right)^2}{\left(a+b+c+d\right)^2}=2\)

Dấu "=" xảy ra khi a = b = c = d

Chúc bạn học tốt !!!

Bình luận (0)
༄NguyễnTrungNghĩa༄༂
Xem chi tiết
༄NguyễnTrungNghĩa༄༂
15 tháng 11 2018 lúc 20:26

Giúp em với ak !!!

Bình luận (0)
No choice
23 tháng 11 2018 lúc 21:05

D B A C H

a)    

 +  Xét ∆AHB và ∆DBH có :

             BH chung 

             góc AHB = góc DBH = 900

              AH = DB

=>   ∆AHB = ∆DHB ( c.g.c )

   => ĐPCM

b)  Vì ∆AHB = ∆DHB ( cmt )

=>   góc ABH = góc DHB

và chúng ở vị trí SLT 

=>   AB / / DH   ( đpcm )

c)  Ta có :

          góc ABH + góc BAH = 900  ( vì ∆ ABH vuông tại H )

Lại có :   góc ABH + góc ACB = 900 ( vì ∆ABC vuông tại A )

    =>  góc BAH = góc ACB = 350 

Bình luận (0)
bá đạo
Xem chi tiết
Nguyễn Nhật Minh
28 tháng 12 2015 lúc 21:19

 

\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)

=> VT >/ 2

Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)

Bình luận (0)
Trần Đức Thắng
28 tháng 12 2015 lúc 21:37

\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)

\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)

\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)

Dấu '' = '' xảy ra khi a = b + c+ d 

                              b = c+d+a 

                            c = b+a+d

                             d = a+b+c 

Hình như ko có a ; b; c ;d 

Bình luận (0)