Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quốc Bảo

Cho a ,b ,c ,d > 0 Chứng minh rằng : \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)

Kuro Kazuya
31 tháng 1 2017 lúc 3:04

Áp dụng BĐT \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\) với a , b > 0 ta có :

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a\left(d+a\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}=\frac{ad+a^2+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\frac{4\left(ad+a^2+bc+c^2\right)}{\left(a+b+c+d\right)^2}\) ( 1 )

\(\frac{b}{c+d}+\frac{d}{a+b}=\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}=\frac{ab+b^2+cd+d^2}{\left(a+b\right)\left(c+d\right)}\ge\frac{4\left(ab+b^2+cd+d^2\right)}{\left(a+b+c+d\right)^2}\) ( 2 )

Từ ( 1 ) và ( 2 ) cộng theo từng vế:

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Cần chứng minh rằng \(\frac{\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow2\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow2ab+2bc+2cd+2ad+2a^2+2b^2+2c^2+2d^2\ge a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2cd+2bd\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge2ac+2bd\)

\(\Rightarrow a^2-2ac+c^2+b^2-2bd+d^2\ge0\)

\(\Rightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\left(đpcm\right)\)

Vậy \(\frac{ab+bc+cd+ad+a^2+b^2+c^2+d^2}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge2\)

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)


Các câu hỏi tương tự
Quốc Bảo
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
Xem chi tiết
Như
Xem chi tiết
Như
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Quốc Bảo
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Kiên Là Tôi
Xem chi tiết