Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Postgass D Ace
Xem chi tiết
Thanh Tùng DZ
3 tháng 3 2020 lúc 20:06

nhận thấy x = 0 không là nghiệm của phương trình

Chia 2 vế phương trình cho x2, ta được : 

\(x^2-9x+24-\frac{27}{x}+\frac{9}{x^2}=0\)  ( 1 )

đặt \(t=x+\frac{3}{x}\)

( 1 ) \(\Leftrightarrow\left(x+\frac{3}{x}\right)^2-9\left(x+\frac{3}{x}\right)+18=0\)

\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\left(t-6\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)

Khi đó : \(\orbr{\begin{cases}x+\frac{3}{x}=6\Leftrightarrow x=3\pm\sqrt{6}\\x+\frac{3}{x}=3\Leftrightarrow x\in\varnothing\end{cases}}\)

Khách vãng lai đã xóa
Đặng Đình Tiến
Xem chi tiết
Toru
3 tháng 8 2023 lúc 21:10

a) 9x4+16y6-24x2y3

=(3x2)2-2.3x2.4y3+(4y3)2

=(3x2-4y3)2

b) 16x2-24xy+9y2

=(4x)2-2.4x.3y+(3y)2

=(4x-3y)2

c) 36x2-(3x-2)2

=(36x-3x+2)(36x+3x-2)

=(33x+2)(39x-2)

d) 27x3+54x2y+36xy2+8y3

=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3

=(3x+2y)3

e) y9-9x2y6+27x4y3-27x6

=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3

=(y3-3x2)3

f) 64x3+1

= (4x)3+13

=(4x+1)[(4x)2-4x.1+12]

=(4x+1)(16x2-4x+1)

e) 27x6-8x3  *sửa đề*

=(3x2)3-(2x)3

=(3x2-2x)[(3x)2+3x2.2x+(2x)2]

=(3x2-2x)(9x2+6x3+4x2)

~~~

nhóm54
Xem chi tiết
✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 10:56

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

vu dieu linh
Xem chi tiết
Minh Nguyen
7 tháng 2 2020 lúc 18:16

1/ \(x^3-7x+6=0\)

\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc   \(x-1=0\)

hoặc   \(x+2=0\)

\(\Leftrightarrow\)\(x=-3\)

hoặc   \(x=1\)

hoặc   \(x=-2\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;1;-2\right\}\)

2/ \(x^3-6x^2-x+30\)

\(\Leftrightarrow x^3+2x^2-8x^2-16x+15x+30=0\)

\(\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-3x-5x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x-3=0\)

hoặc   \(x-5=0\)

\(\Leftrightarrow\)\(x=-2\)

hoặc   \(x=3\)

hoặc   \(x=5\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-2;3;5\right\}\)

3/ \(x^3-9x^2+6x+16=0\)

\(\Leftrightarrow x^3+x^2-10x^2-10x+16x+16=0\)

\(\Leftrightarrow x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-10x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-8x-2x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-8\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc  \(x-8=0\)

hoặc  \(x-2=0\)

\(\Leftrightarrow\)\(x=-1\)

hoặc   \(x=8\)

hoặc   \(x=2\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;8;2\right\}\)

Khách vãng lai đã xóa
Minh Nguyen
7 tháng 2 2020 lúc 18:25

4/ Đề bài sai ! Sửa lại nhé :

 \(2x^3-x^2+5x+3=0\)

\(\Leftrightarrow2x^3+x^2-2x^2-x+6x+3=0\)

\(\Leftrightarrow x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x^2-x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{1}{2}\right\}\)

Khách vãng lai đã xóa
Thầy Tùng Dương
Xem chi tiết
Phạm Thành Đông
6 tháng 3 2021 lúc 12:04

\(x^4-9x^2+24x-16=\)\(0\)

\(\Leftrightarrow x^4-\left(9x^2-24x+16\right)=0\)

\(\Leftrightarrow x^4-\left(3x-4\right)^2=0\)

\(\Leftrightarrow\left(x^2+3x-4\right)\left(x^2-3x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]=0\)

Vì \(\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)nên:

\(\left(x+4\right)\left(x-1\right)=0:\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

Vậy phương trình có tập nghiệm \(S=\left\{1;-4\right\}\)

Khách vãng lai đã xóa
Phạm Thành Đông
6 tháng 3 2021 lúc 12:14

\(x^4=6x^2+12x+\)\(8\)

\(\Leftrightarrow x^4-2x^2+1=4x^2+12x+9\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow|x^2-1|=|2x+3|\)\(|\)

xét các trường hợp:

- Trường hợp 1:

\(x^2-1=2x+3\)

\(\Leftrightarrow x^2-1-2x-3=0\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{5}\\x-1=-\sqrt{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}}\)

-Trường hợp 2:

\(x^2-1=-2x-3\)

\(\Leftrightarrow x^2-1+2x+3=0\)

\(\Leftrightarrow x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)^2+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=-1\left(vn\right)\)(vô nghiệm)

Vậy phương trình có tập nghiệm: \(S=\left\{1\pm\sqrt{5}\right\}\)

Khách vãng lai đã xóa
Phạm Thành Đông
6 tháng 3 2021 lúc 12:48

\(x^4=4x+1\)

\(\Leftrightarrow x^4+2x^2+1=2x^2+4x+2\)

\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)

\(\Leftrightarrow|x^2+1|=|x\sqrt{2}+\sqrt{2}|\)

Xét các trường hợp sau:

-Trường hợp 1:

\(x^2+1=x\sqrt{2}+\sqrt{2}\)

\(\Leftrightarrow x^2+1-x\sqrt{2}-\sqrt{2}=0\)

\(\Leftrightarrow\left(x^2-2x.\frac{\sqrt{2}}{2}+\frac{1}{2}\right)-\frac{2\sqrt{2}-1}{2}=0\)

\(\Leftrightarrow\left(x-\frac{1}{\sqrt{2}}\right)^2=\frac{2\sqrt{2}-1}{2}\)

Vì \(\frac{2\sqrt{2}-1}{2}>0\)nên:

\(\left|x-\frac{1}{\sqrt{2}}\right|=\left|\sqrt{\frac{2\sqrt{2}-1}{2}}\right|\)

Lại xét các trường hợp:

+Trường hợp 1.1:

\(x-\frac{1}{\sqrt{2}}=\frac{\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\)\(\Leftrightarrow x=\frac{\sqrt{2\sqrt{2}-1}+1}{\sqrt{2}}\)

+Trường hợp 1.2:

\(x-\frac{1}{\sqrt{2}}=\frac{\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\Leftrightarrow x=\frac{1-\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\)

-Trường hợp 2:

\(x^2+1=-x\sqrt{2}-\sqrt{2}\)(2)

\(\Leftrightarrow x^2+1+x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow\left(x^2+2x.\frac{\sqrt{2}}{2}+\frac{1}{2}\right)+\frac{1+2\sqrt{2}}{2}=0\)

\(\Leftrightarrow\left(x+\frac{1}{\sqrt{2}}\right)^2=\frac{-1-2\sqrt{2}}{2}\)(vô nghiệm)

Do đó phương trình (2) vô nghiệm.

Vậy phương trình có tập nghiệm : \(S=\left\{\frac{1\pm\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\right\}\)

Khách vãng lai đã xóa
Bạch Tuyết
Xem chi tiết
....
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 14:46

\(\Leftrightarrow x^4-x^3+x^3-x^2-8x^2+8x+16x-16=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x+16\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+4x^2-3x^2-12x+4x+16\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x^2-3x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\\\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\left(vô.n_o\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)