(3x-5)^2-(2x+1)^2-5(x-1)(x+1) =15x-20
Giải pt
2(x+1)=5x+7
3x-1=x+3
15-7x=9-3x
2x+1=15x-5
2x+1=15x-5
3x-2=2x+5
\(2\left(x+1\right)=5x+7\\ \Leftrightarrow2x+2=5x+7\\\Leftrightarrow 2x-5x=-2+7\\\Leftrightarrow -3x=5\\ \Leftrightarrow x=-\frac{5}{3}\)
Vậy phương trình trên có nghiệm là \(-\frac{5}{3}\)
\(3x-1=x+3\\ \Leftrightarrow3x-x=1+3\\ \Leftrightarrow2x=4\\\Leftrightarrow x=2\)
Vậy phương trình trên có nghiệm là \(2\)
\(15-7x=9-3x\\\Leftrightarrow -7x+3x=-15+9\\\Leftrightarrow -4x=-6\\ \Leftrightarrow x=\frac{3}{2}\)
Vậy phương trình trên có nghiệm là \(\frac{3}{2}\)
\(2x+1=15x-5\\ \Leftrightarrow2x-15x=-1-5\\ \Leftrightarrow-13x=-6\\ \Leftrightarrow x=\frac{6}{13}\)
Vậy phương trình trên có nghiệm là \(\frac{6}{13}\)
\(3x-2=2x+5\\ \Leftrightarrow3x-2x=2+5\\ \Leftrightarrow x=7\)
Vậy phương trình trên có nghiệm là \(7\)
TÌm x
a. 5x.3x+7)-15x2 = 70
b. 3x.(x+7)=21-3x2 = 0
c. x(5-2x)+2x.(x-1) = 0
d. 4x.(x-5)-4x2 = 60
e. (x-3)3+(5-x)2 = 12
g. (2x-1)2-(2x+4)2 = 0
h.( 2x-3).(3x+1)-x.(6x+10) = 30
k. (2x -1).(8x+5)- (4x +3)2 = 20
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
k) \(\left(2x-1\right)\left(8x+5\right)-\left(4x+3\right)^2=20\)
\(\Leftrightarrow8x\left(2x-1\right)+5\left(2x-1\right)-\left(16x^2+24x+9\right)=20\)
\(\Leftrightarrow16x^2-8x+10x-5-16x^2-24x-9=20\)
\(\Leftrightarrow-8x+10x-5-24x-9=20\)
\(\Leftrightarrow-22x-14=20\)
\(\Leftrightarrow-11x-7=10\)
\(\Leftrightarrow x=\frac{-11}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-11}{17}\right\}\)
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
(6x^6+2x^5-2x^4-15x^3+x^2-7x-2):(x+3x^2-1)
Tìm x
a,15x3-15x=0 b,3x2-6x+3=0
c,5(x-1)-3x(1-x)=0 d,6x-(x+2)2-5=(1-3x)3-12x
e,-7(x+2)=2x(x+2) f,(2x-3)(3x+5)=(x-1)(3x+5)
g(x2-3x+1)2-(x2-x+4)2=0
tks ae
a, 15x3 - 15x = 0
15x(x2-1)=0
15x=0 hoặc x2-1=0 (tự tính nhoa)
b,3x2-6x+3=0
3(x2-2x+1)=0
x2 -2x+1=0:3=3
x2-2x=3-1=2
x(x-2)=0
x=0 hoặc x-2=0 (tự tính nhoa)
Bài làm
a) 15x3-15x=0
<=> 15x( x2 - 1 ) = 0
<=> \(\orbr{\begin{cases}15x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy x = { 0; + 1 }
b) 3x2 - 6x + 3 = 0
<=> 3( x2 - 2x + 1 ) = 0
<=> x2 - 2x + 1 = 0
<=> ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy x = 1
c) 5(x - 1) - 3x(1 - x) = 0
<=> 5(x - 1) + 3x(x - 1) = 0
<=> (5 + 3x)(x - 1) = 0
<=> \(\orbr{\begin{cases}5+3x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}}\)
Vậy x = { -5/3; 1 }
e) -7(x + 2) = 2x(x + 2)
<=> -7(x + 2 ) - 2x( x + 2 ) = 0
<=> (x + 2)(-7 - 2x) = 0
<=> \(\orbr{\begin{cases}x+2=0\\-7-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{2}\end{cases}}}\)
Vậy x = { -2; x = -7/2 }
f)(2x - 3)(3x + 5) = (x - 1)(3x + 5)
<=> (2x - 3)(3x + 5) - (x - 1)(3x + 5) = 0
<=> (3x + 5)(2x - 3 - x + 1) = 0
<=> (3x + 5)(x - 2) = 0
<=> \(\orbr{\begin{cases}3x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=2\end{cases}}}\)
Vậy x = { -5/3; 2 }
không ai trả lời thì mình giúp vậy
\(c,5\left(x-1\right)-3x\left(1-x\right)=0\)
\(< =>5x-5-3x+3x^2=0\)
\(< =>3x^2+2x-5=0< =>3x^2-3x+5x-5=0\)
\(< =>3x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)=0\)
\(< =>\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}}< =>\orbr{\begin{cases}2x=-5\\x=1\end{cases}}< =>\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}\)
\(d,6x-\left(x+2\right)^2-5=\left(1-3x\right)^3-12x\)
\(< =>6x-x^2-4x-9=1-27x^3+27x^2-21x\)
\(< =>-x^2+2x-9-x+27x^3-27x^2+21x=0\)
\(< =>27x^3-28x^2+22x-9=0\)(vô nghiệm)
\(e,-7\left(x+2\right)=2x\left(x+2\right)\)
\(< =>-7x-14-2x^2-4x=0\)
\(< =>-2x^2-11x-14=0\)
\(< =>-2\left(x^2+\frac{11}{2}x+\frac{121}{16}\right)+\frac{9}{8}=0\)
\(< =>\left(x+\frac{11}{4}\right)^2=-\frac{9}{8}=\frac{9}{16}\)
\(< =>\orbr{\begin{cases}x+\frac{11}{4}=\sqrt{\frac{9}{16}}\\x+\frac{11}{4}=-\sqrt{\frac{9}{16}}\end{cases}}< =>\orbr{\begin{cases}x=\frac{3}{4}-\frac{11}{4}=-2\\x=-\frac{3}{4}-\frac{11}{4}=-\frac{14}{4}=-\frac{7}{2}\end{cases}}\)
\(f,\left(2x-3\right)\left(3x+5\right)=\left(x-1\right)\left(3x+5\right)\)
\(< =>2x-3=x-1< =>2x-x-3+1=0< =>x=2\)
bài cuối mình chịu đấy
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
b: =x-2
d: \(=-x^3+\dfrac{3}{2}-2x\)
Tìm x
(15x-5) (4x-1) + (3x-7) (1-16x) =81
(2x+4) (x-4) +(x-5) (x-2) =3x+5 (x-4)
(8x-3) (3x+2) - (4x+7) (x+4) = (x+1) (5x-1)
(6x^6 + 2x^5 - 2x^4 - 15x^3 + x^2 + 7x - 2 : x - 3x^2 - 1 =
thực hiện phép tính
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\dfrac{15x-11}{x^2+2x-3}-\dfrac{3x-2}{x-1}-\dfrac{2x+3}{3+x}\)
\(\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\Leftrightarrow\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(ĐKXĐ:x\ne1\)
\(\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{(1+2x)\left(x-1\right)}{(x^2+x+1)\left(x-1\right)}-\dfrac{6\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\)
\(\Rightarrow4x^2-3x+5-\left(1+2x\right)\left(x-1\right)-6\left(x^2+x+1\right)\)
\(\Rightarrow4x^2-3x+5-\left(x-1+2x^2-2x\right)-6x^2-6x-6\)
\(\Rightarrow4x^2-3x+5-x+1-2x^2+2x-6x^2-6x-6\)
\(\Rightarrow-4x^2-8x\)
⇒-4x(x-4)