Tìm x để các biểu thức sau đạt giá trị lớn nhất , tìm GTLN đó
M = \(\sqrt{3}-\sqrt{x-1}\)
Tìm các giá trị nguyên của x để biểu thức C = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)\(\left(x\ge0;x\ne4\right)\) đạt giá trị lớn nhất
`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`
Ta cần tìm `max(5/(sqrtx-2))`
Nếu `0<=x<4` thì `5/(sqrtx-2)<0`
Nếu `x>4` thì `5/(sqrtx-2)>0`
Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`
`=>sqrtx-2>=sqrt5-2`
`=>5/(sqrtx-2)<=5/(sqrt5-2)`
`=>C<=1+5/(sqrt5-2)=11+sqrt5`
Vậy `C_(max)=11+sqrt5<=>x=5`
Tìm tất cả các giá trị của x để biểu thức A = \(\dfrac{3\sqrt{x}}{x+1}\left(x\ge0\right)\) đạt GTLN
Cách 1:
Áp dụng BĐT Cô-si:
$x+1\geq 2\sqrt{x}\Rightarrow A=\frac{3\sqrt{x}}{x+1}\leq \frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}$
Vậy $A_{\max}=\frac{3}{2}$
Giá trị này đạt tại $x=1$
Cách 2:
$\frac{2}{3}A=\frac{2\sqrt{x}}{x+1}$
$\Rightarrow 1-\frac{2}{3}A=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{(\sqrt{x}-1)^2}{x+1}\geq 0$ với mọi $x\geq 0$
$\Rightarrow \frac{2}{3}A\leq 1$
$\Rightarrow A\leq \frac{3}{2}$
Vậy $A_{\max}=\frac{3}{2}$. Giá trị này đạt tại $\sqrt{x}-1=0\Leftrightarrow x=1$
Cho các biểu thức A=\(\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B=\(\dfrac{3}{\sqrt{x}-1}\) với x≥0, x≠1, x≠9
a) Tính giá trị của B khi x=4
b) Rút gọn biểu thức P=A-B
c) Tìm xϵN để biểu thức \(\dfrac{1}{P}\) đạt giá trị lớn nhất
a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:
\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)
Vậy: Khi x=4 thì B=3
b) Ta có: P=A-B
\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)
\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
Tìm tất cả các giá trị của x để biểu thức B = \(\dfrac{2\sqrt{x}}{x+\sqrt{x}+1}\)\(\left(x\ge0\right)\) đạt GTLN
Lời giải:
$\frac{3}{2}B=\frac{3\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow 1-\frac{3}{2}B=1-\frac{3\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{(\sqrt{x}-1)^2}{x+\sqrt{x}+1}\geq 0$ với mọi $x\geq 0$
$\Rightarrow \frac{3}{2}B\leq 1$
$\Rightarrow B\leq \frac{2}{3}$
Vậy $B_{\max}=\frac{2}{3}$ khi $\sqrt{x}-1=0\Leftrightarrow x=1$
Tìm x để biểu thức sau đạt giá trị lớn nhất
C=\(\dfrac{1}{\sqrt{x}+3}\)
Ta có: \(\sqrt{x}+3\ge3\forall x\) thỏa mãn ĐKXĐ
nên \(\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0
ĐK: \(x\ge0\)
\(C=\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{0+3}=\dfrac{1}{3}\)
\(\Rightarrow minC=\dfrac{1}{3}\Leftrightarrow x=0\)
Cho các biểu thức A = \(\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B = \(\dfrac{3}{\sqrt{x}-1}\) với x≥0; x≠1; x≠9
a. Rút gọn P = A - B
b. Tìm x ϵ N để biểu thức \(\dfrac{1}{P}\) đạt giá trị lớn nhất.
Cho biểu thức P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a) Tìm điều kiện để P xác định và rút gọn P.
b) Tìm các giá trị nguyên của x để P đạt giá trị nguyên.
c)Tìm giá trị của x để P đạt GTNN, tìm giá trị nhỏ nhất đó.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
kkk. thế mới hỏi chứ. đề đấy: đố giải được
\(A=\dfrac{\left(x+2\right)^2}{x};B=x\left(x+2\right)+\dfrac{x^2+6x+4}{x}\) với x ≠ 0
a. Tính giá trị của biểu thức A biết x > 0 ; \(x^2=3-2\sqrt{2}\)
b. Rút gọn biểu thức \(M=A-B\)
c.Tìm x để biểu thức M đạt giá trị lớn nhất .Tìm giá trị lớn nhất đó ?
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)
Tìm x để biểu thức sau đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó:
\(A=\sqrt{9-x^2}+4\)
\(B=6\sqrt{x}-x-15\)
\(C=2\sqrt{x}-x\)
Giúp mk vs!!!
\(A=\sqrt{9-x^2}+4\) Đạt Max khi \(\sqrt{9-x^2}\)đạt giá trị lớn nhất. Hay (9-x2) đạt giá trị lớn nhất.
Do x2 \(\ge\)0 với mọi x => để 9-x2 đạt giá trị lớn nhất thì x2 phải đạt GTNN => x2=0 => x=0
=> \(A_{max}=\sqrt{9}+4=3+4=7\)đạt được khi x=0
b/ \(B=6\sqrt{x}-x-15=-x+6\sqrt{x}-9-6=-6-\left(x-6\sqrt{x}+9\right)\)
=> \(B=-6-\left(\sqrt{x}-3\right)^2\)
Do \(\left(\sqrt{x}-3\right)^2\ge0\) Với mọi x => Để Bmax thì \(\left(\sqrt{x}-3\right)^2\) đạt Min => \(\left(\sqrt{x}-3\right)^2=0\)
=> Bmin=-6 đạt được khi \(\left(\sqrt{x}-3\right)^2=0\)hay x=9
c/ \(C=2\sqrt{x}-x=1-1+2\sqrt{x}-x=1-\left(1-2\sqrt{x}+x\right)\)
=> \(C=1-\left(1-\sqrt{x}\right)^2\) => Do \(\left(1-\sqrt{x}\right)^2\ge0\) Với mọi x => Để C đạt max thì \(\left(1-\sqrt{x}\right)^2\)đạt min => \(\left(1-\sqrt{x}\right)^2=0\)
=> Cmin = 1 Đạt được khi x=1
Cho biểu thức M=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn biểu thức M
b) Tìm giá trị của x để biểu thức M đạt giá trị nhỏ nhất