Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
illumina
Xem chi tiết
Phùng Công Anh
21 tháng 6 2023 lúc 8:36

`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`

Ta cần tìm `max(5/(sqrtx-2))`

Nếu `0<=x<4` thì `5/(sqrtx-2)<0`

Nếu `x>4` thì `5/(sqrtx-2)>0`

Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`

`=>sqrtx-2>=sqrt5-2`

`=>5/(sqrtx-2)<=5/(sqrt5-2)`

`=>C<=1+5/(sqrt5-2)=11+sqrt5`

Vậy `C_(max)=11+sqrt5<=>x=5`

illumina
Xem chi tiết
Akai Haruma
22 tháng 6 2023 lúc 15:59

Cách 1: 

Áp dụng BĐT Cô-si:

$x+1\geq 2\sqrt{x}\Rightarrow A=\frac{3\sqrt{x}}{x+1}\leq \frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$

Giá trị này đạt tại $x=1$

Akai Haruma
22 tháng 6 2023 lúc 16:00

Cách 2:

$\frac{2}{3}A=\frac{2\sqrt{x}}{x+1}$

$\Rightarrow 1-\frac{2}{3}A=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{(\sqrt{x}-1)^2}{x+1}\geq 0$ với mọi $x\geq 0$

$\Rightarrow \frac{2}{3}A\leq 1$

$\Rightarrow A\leq \frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$. Giá trị này đạt tại $\sqrt{x}-1=0\Leftrightarrow x=1$

Tutu
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 23:18

a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:

\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)

Vậy: Khi x=4 thì B=3

b) Ta có: P=A-B

\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

Trần Hoàng Anh
Xem chi tiết
Akai Haruma
22 tháng 6 2023 lúc 15:58

Lời giải:

$\frac{3}{2}B=\frac{3\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow 1-\frac{3}{2}B=1-\frac{3\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{(\sqrt{x}-1)^2}{x+\sqrt{x}+1}\geq 0$ với mọi $x\geq 0$

$\Rightarrow \frac{3}{2}B\leq 1$

$\Rightarrow B\leq \frac{2}{3}$

Vậy $B_{\max}=\frac{2}{3}$ khi $\sqrt{x}-1=0\Leftrightarrow x=1$

Tran Nguyen Linh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 21:37

Ta có: \(\sqrt{x}+3\ge3\forall x\) thỏa mãn ĐKXĐ

nên \(\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0

Hồng Phúc
3 tháng 9 2021 lúc 21:42

ĐK: \(x\ge0\)

\(C=\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{0+3}=\dfrac{1}{3}\)

\(\Rightarrow minC=\dfrac{1}{3}\Leftrightarrow x=0\)

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2023 lúc 19:00

loading...  

Nguyễn Thành Huy
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 11 2020 lúc 23:28

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)

=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2

Đề sai à --

Khách vãng lai đã xóa
Nguyễn Thành Huy
5 tháng 11 2020 lúc 22:50

kkk. thế mới hỏi chứ. đề đấy: đố giải được

Khách vãng lai đã xóa
Vy Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 23:23

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

Trần Hoàng Uyên Nhi
Xem chi tiết
Bùi Thế Hào
15 tháng 8 2017 lúc 12:09

\(A=\sqrt{9-x^2}+4\)  Đạt Max khi \(\sqrt{9-x^2}\)đạt giá trị lớn nhất. Hay (9-x2) đạt giá trị lớn nhất.

Do x2 \(\ge\)0 với mọi x => để 9-x2 đạt giá trị lớn nhất thì x2 phải đạt GTNN => x2=0 => x=0

=> \(A_{max}=\sqrt{9}+4=3+4=7\)đạt được khi x=0

b/ \(B=6\sqrt{x}-x-15=-x+6\sqrt{x}-9-6=-6-\left(x-6\sqrt{x}+9\right)\)

=> \(B=-6-\left(\sqrt{x}-3\right)^2\)

Do \(\left(\sqrt{x}-3\right)^2\ge0\) Với mọi x => Để Bmax thì \(\left(\sqrt{x}-3\right)^2\) đạt Min => \(\left(\sqrt{x}-3\right)^2=0\)

=> Bmin=-6  đạt được khi \(\left(\sqrt{x}-3\right)^2=0\)hay x=9

Bùi Thế Hào
15 tháng 8 2017 lúc 12:12

c/ \(C=2\sqrt{x}-x=1-1+2\sqrt{x}-x=1-\left(1-2\sqrt{x}+x\right)\)

=> \(C=1-\left(1-\sqrt{x}\right)^2\)  => Do \(\left(1-\sqrt{x}\right)^2\ge0\) Với mọi x => Để C đạt max thì \(\left(1-\sqrt{x}\right)^2\)đạt min => \(\left(1-\sqrt{x}\right)^2=0\) 

=> Cmin = 1 Đạt được khi x=1

Nguyễn Minh Huy
Xem chi tiết