Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
illumina

Tìm tất cả các giá trị của x để biểu thức A = \(\dfrac{3\sqrt{x}}{x+1}\left(x\ge0\right)\) đạt GTLN

Akai Haruma
22 tháng 6 2023 lúc 15:59

Cách 1: 

Áp dụng BĐT Cô-si:

$x+1\geq 2\sqrt{x}\Rightarrow A=\frac{3\sqrt{x}}{x+1}\leq \frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$

Giá trị này đạt tại $x=1$

Akai Haruma
22 tháng 6 2023 lúc 16:00

Cách 2:

$\frac{2}{3}A=\frac{2\sqrt{x}}{x+1}$

$\Rightarrow 1-\frac{2}{3}A=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{(\sqrt{x}-1)^2}{x+1}\geq 0$ với mọi $x\geq 0$

$\Rightarrow \frac{2}{3}A\leq 1$

$\Rightarrow A\leq \frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$. Giá trị này đạt tại $\sqrt{x}-1=0\Leftrightarrow x=1$


Các câu hỏi tương tự
illumina
Xem chi tiết
illumina
Xem chi tiết
nchdtt
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
Ly Ly
Xem chi tiết
illumina
Xem chi tiết