tìm gtln của biểu thức
P = 2 - 5x2 - y2 - 6xy + 2x
tìm GTLN của biểu thức
D=2023-8x+2y+4xy-y2-5x2
\(D=2023-8x+2y+4xy-y^2-5x^2\)
\(=-\left(y^2+5x^2-4xy-2y+8x-2023\right)\)
\(=-\left(y^2-2.y.\left(2x+1\right)+\left(2x+1\right)^2-\left(2x+1\right)^2+5x^2+8x-2023\right)\)
\(=-\left[\left(y-2x-1\right)^2-4x^2-4x-1+5x^2+8x-2023\right]\)
\(=-\left[\left(y-2x-1\right)^2+x^2+4x-2024\right]\)
\(=-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]+2028\)
Vì \(-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]\le0\forall x,y\)
\(MaxD=2028\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
tìm GTLN của biểu thức
C=-x2-4x-y2+8y+2
D=2023-8x+2y+4xy-y2-5x2
\(C=-\left(x^2+4x+4\right)-\left(y^2-8y+16\right)+22\\ =-\left(x^2+2x.2+2^2\right)-\left(y^2-2.y.4+4^2\right)+22\\ =-\left(x+2\right)^2-\left(y-4\right)^2+22\\ Vậy:max_C=22.khi.x=-2.và.y=4\)
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
2) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
f) X4 – x3 – 10x2 + 2x +4
g) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
h) X4 – 14x3 + 71x2 – 154x + 120
Giúp mik vs cần gấp!!!
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
2) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
f) X4 – x3 – 10x2 + 2x +4
g) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
h) X4 – 14x3 + 71x2 – 154x + 120
Giúp mik với mik đang cần rất gấp ạ!!!
Tìm GTLN của biểu thức \(K=-x^2+6xy-10y^2-2x+10y+2010\)
cho biểu thức P=2x-2xy-2x2-y2.Tìm GTLN của biểu thức P, khi P= GTLN thì x, y bằng mấy
Ta có: \(P=2x-2xy-2x^2-y^2\)
\(P=-x^2-2xy-y^2-x^2+2x\)
\(P=-\left(x^2+2xy+y^2\right)-\left(x^2-2x+1\right)+1\)
\(P=-\left(x+y\right)^2-\left(x-1\right)^2+1\)
\(P=-\left[\left(x+y\right)^2+\left(x-1\right)^2\right]+1\le1\forall x;y\)
Vậy GTLN của P là 1 khi x=-1; y=1.
Tìm GTLN (hoặc GTNN) của các biểu thức sau:
e) E= 2x2+9x2-6xy-6x-12y+2011
1)Phân tích đa thức thành nhân tử:
a) 11x2-6xy-5y2
b)4x3-16x2+19x-6
2) Tìm x,y biết
a)13x2+y2-16x-6xy+9=0
b)5x2+2y2-4x+6xy+8=0
Bài 1:
a: \(11x^2-6xy-5y^2\)
\(=11x^2-11xy+5xy-5y^2\)
\(=11x\left(x-y\right)+5y\left(x-y\right)\)
\(=\left(x-y\right)\left(11x+5y\right)\)
b: \(4x^3-16x^2+19x-6\)
\(=4x^3-8x^2-8x^2+16x+3x-6\)
\(=\left(x-2\right)\left(4x^2-8x+3\right)\)
\(=\left(x-2\right)\left(2x-1\right)\left(2x-3\right)\)
1)Phân tích đa thức thành nhân tử:
a) 11x2-6xy-5y2
b)4x3-16x2+19x-6
2) Tìm x,y biết
a)13x2+y2-16x-6xy+9=0
b)5x2+2y2-4x+6xy+8=0
Bài 1:
a: \(11x^2-6xy-5y^2\)
\(=11x^2-11xy+5xy-5y^2\)
\(=11x\left(x-y\right)+5y\left(x-y\right)\)
\(=\left(x-y\right)\left(11x+5y\right)\)
b: \(4x^3-16x^2+19x-6\)
\(=4x^3-8x^2-8x^2+16x+3x-6\)
\(=\left(x-2\right)\left(4x^2-8x+3\right)\)
\(=\left(x-2\right)\left(2x-3\right)\left(2x-1\right)\)
\(a,=11x^2-11xy+5xy-5y^2=\left(11x+5y\right)\left(x-y\right)\\ b,=4x^3-8x^2-8x^2+16x+3x-6\\ =\left(x-2\right)\left(4x^2-8x+3\right)\\ =\left(x-2\right)\left(4x^2-2x-6x+3\right)\\ =\left(x-2\right)\left(2x-1\right)\left(2x-3\right)\)