Cho x,y,z > 0 , tm x+y+x=1
CMR \(\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}\le\sqrt[3]{3}\)
Cho x,y,z > 0 ; x + y + z = 1
CMR: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{zx}{y+zx}}\le\frac{3}{2}\)
Cho x, y, z >0 thỏa mãn x + y + z = 1
CMR: \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{zx}{zx+y}}\le\dfrac{3}{2}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
Cho 3 số dương x,y,z có tổng bằng 1.CMR\(\sqrt{\frac{xy}{xy+z}}+\sqrt{\frac{yz}{yz+x}}+\sqrt{\frac{zx}{zx+y}}\le\frac{3}{2}\)
\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}\right)\)
Tương tự: \(\sqrt{\frac{yz}{yz+x}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{x+z}\right)\) ; \(\sqrt{\frac{zx}{zx+y}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Cho x,y,z>0 tm\(xy+yz+zx\ge3\). C/m
\(\dfrac{x^3}{\sqrt{y^2+3}}+\dfrac{y^3}{\sqrt{z^2+3}}+\dfrac{z^3}{\sqrt{x^2+3}}\ge\dfrac{1}{2}\)
Gọi \(A=\sum\dfrac{x^3}{\sqrt{y^2+3}}\)
Theo Holder: \(A.A.\left(\left(y^2+3\right)+\left(z^2+3\right)+\left(x^2+3\right)\right)\ge\left(x^3+y^3+z^3\right)^3\)
\(\Rightarrow A^2\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{x^2+y^2+z^2+9}\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}=\dfrac{\left(x^3+y^3+z^3\right)^3}{\left(x+y+z\right)^2+xy+yz+zx}\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{\left(x+y+z\right)^2+\dfrac{\left(x+y+z\right)^2}{3}}\)
Ta có đánh giá sau: \(x^3+y^3+z^3\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\dfrac{\left(x+y+z\right)^3}{9}\)
\(\Rightarrow A^2\ge\dfrac{\dfrac{\left(x+y+z\right)^3}{9}}{\left(x+y+z\right)^2+\dfrac{\left(x+y+z\right)^2}{3}}=\dfrac{x+y+z}{12}\ge\dfrac{\sqrt{3\left(xy+yz+zx\right)}}{12}\ge\dfrac{1}{4}\)
\(\Rightarrow A\ge\dfrac{1}{2}\)
Cho x,y,z > 0 và xyz=1.cmr:
\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
Ta có: \(x^3+y^3\ge xy\left(x+y\right)\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)\)
\(=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)(vì xyz = 1)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}=\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}=\sqrt{\frac{3}{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}=\sqrt{\frac{3}{zx}}\)
Cộng vế với vế, ta được:
\(BĐT=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge3\sqrt{3}\sqrt[3]{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
\(VT-VP=\Sigma_{cyc}\frac{\frac{1}{2}\left(x+y+1\right)\left(x-y\right)^2}{xy\left(\sqrt{x^3+y^3+1}+\sqrt{3xy}\right)}+\Sigma_{cyc}\frac{\left(x-1\right)^2}{xy\left(\sqrt{x^3+y^3+1}+\sqrt{3xy}\right)}\)
Cho a, b, c > 0 và x + y + z = 3 .
CMR : \(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+zx}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
cho x+y+z=1. CMR \(\sqrt{\frac{xy}{xy+z}}+\sqrt{\frac{yz}{yz+x}}+\sqrt{\frac{zx}{zx+y}}< =\frac{3}{2}\)giúp mình với!!!!!!!!!
\(\text{Σ}\sqrt{\frac{xy}{xy+z}}=\text{Σ}\sqrt{\frac{xy}{xy\left(x+y+z\right)}}=\text{Σ}\sqrt{\frac{xy}{\left(x+y\right)\left(x+z\right)}}\)
\(\le\text{Σ}\left(\frac{\frac{x}{x+y}+\frac{y}{x+z}}{2}\right)=\frac{3}{2}\)
Dấu = xảy ra khi x=y=z=1/3
mình không hiểu kí hiệu của bạn là gì??????????bạn giải thích rõ hơn được không
Đó là sigma, bạn có thể hiểu nếu đề bài viết a+b+c thì bạn nó tương đương với
Σa , đương nhiên là làm tắt thôi |
Cho x;y;z > 0 thỏa mãn x2 + y2 + z2 = 3
CMR: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Áp dụng BĐT AM-GM cho 3 số không âm, ta có: \(0< \sqrt[3]{yz.1}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{3x}{y+z+1}\)
Làm tương tự với 2 hạng tử còn lại rồi cộng theo vế thì có:
\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{x+y+1}\right)\)
\(=3\left(\frac{x^2}{xy+xz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{zx+yz+z}\right)\ge^{Schwartz}3.\frac{\left(x+y+z\right)^2}{x+y+z+2\left(xy+yz+zx\right)}\)
\(=3.\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x+y+z+2\left(xy+yz+zx\right)}\ge9.\frac{xy+yz+zx}{\sqrt{3\left(x^2+y^2+z^2\right)}+2\left(x^2+y^2+z^2\right)}\)
\(=9.\frac{xy+yz+zx}{3+2.3}=xy+yz+zx\) => ĐPCM.
Dấu "=" xảy ra khi x=y=z=1.
Cho a,b,c>0, \(x^2+y^2+y^2=3\)
CMR: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xy}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt[3]{yz}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{x}{\frac{y+z+1}{3}}=\frac{3x}{y+z+1}\)
Tương tự rồi cộng lại ta có:
\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)
\(=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)\)
\(\ge\frac{3\left(x^4+y^4+z^4\right)}{2\left(xy+yz+xz\right)+x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}\)
\(=x^2+y^2+z^2\ge xy+yz+xz=VP\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Áp dụng BĐT AM-GM ta có:
\sqrt[3]{yz}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{x}{\frac{y+z+1}{3}}=\frac{3x}{y+z+1}3yz≤3y+z+1⇒3yzx≥3y+z+1x=y+z+13x
Tương tự rồi cộng lại ta có:
VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)VT≥3(y+z+1x+x+z+1y+x+y+1z)
=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)=3(xy+yz+xx2+xy+yz+yy2+yz+xz+zz2)
\ge\frac{3\left(x^4+y^4+z^4\right)}{2\left(xy+yz+xz\right)+x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}≥2(xy+yz+xz)+x+y+z3(x4+y4+z4)≥x2+y2+z2(x2+y2+z2)2
=x^2+y^2+z^2\ge xy+yz+xz=VP=x2+y2+z2≥xy+yz+xz=VP
Đẳng thức xảy ra khi x=y=z=1x=y=z=1