Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Nga
Xem chi tiết
đỗ văn thành
21 tháng 10 2016 lúc 11:42

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

Lê Văn Đăng Khoa
Xem chi tiết
Nguyễn Thị Thanh Huyền
8 tháng 12 2016 lúc 14:05

theo mình là 65 nhé bạn

mặc dù ko bt đúng hay sai nhưng mà đáp án của mình là 65 

nhớ k cho mình nhé!

Nguyễn Kiều Anh
Xem chi tiết
Akai Haruma
26 tháng 8 2021 lúc 22:00

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$

minh anh minh anh
Xem chi tiết
Trần Hà trang
17 tháng 12 2016 lúc 22:30

x+y=4 nên xảy ra các trường hợp là x=0,y=4 ; x=1,y=3 ; x=2,y=2 ; x=3,y=1 ; x=4,y=0

TH1: x=0,y=4

=>\(\sqrt{-1}\)+\(\sqrt{2}\)thì ko có chuyện đó

TH2: x=1,y=3

=>\(\sqrt{0}\)+\(\sqrt{1}\)bằng 1

TH3:x=2,y=2

=>\(\sqrt{1}\)+\(\sqrt{0}\)bằng 1

TH4:x=3,y=1 bằng 1 bạn tự  tính

TH5: x=4,y=0 thì cũng ko có chuyện đó

Vậy tổng S lớn nhất là 1.

k mình nhé hơi thủ công

Tại mình giải theo kiểu lớp 6 và ... bấm máy tính bạn ah

Tuấn Phan Quang
17 tháng 12 2016 lúc 22:23

\(\hept{\begin{cases}\sqrt{x-1}>=0\\\sqrt{y-2}>=0\end{cases}}\)

\(=>\hept{\begin{cases}x-1>=0\\y-2>=0\end{cases}}\)

\(=>\)Chỉ còn 2 trường hợp

TH1:\(\hept{\begin{cases}x=2\\y=2\end{cases}}\)

\(< =>S=\sqrt{2-1}+\sqrt{2-2}\)

\(< =>S=1\)

TH2:\(\hept{\begin{cases}x=1\\y=3\end{cases}}\)

\(=>S=\sqrt{1-1}+\sqrt{3-2}\)

\(=>S=1\)

Vậy GTLN của S=1, Khi x=2,y=2 hoặc x=1,y=3

Trần Quốc Đạt
18 tháng 12 2016 lúc 10:32

Ủa đề có yêu cầu \(x,y\)nguyên không mà các bạn giải kiểu đó?

\(S=\sqrt{x-1}+\sqrt{2-x}\le\sqrt{\frac{x-1+2-x}{2}}=\sqrt{\frac{1}{2}}\)

Đẳng thức xảy ra khi \(x=\frac{3}{2}\)

Trần Hoàng Mỹ Thuật
Xem chi tiết
uzamaki naruto
6 tháng 1 2017 lúc 21:13

478787

Toàn Quyền Nguyễn
6 tháng 1 2017 lúc 21:21

478787 nhé bạn

ngonhuminh
7 tháng 1 2017 lúc 7:02

\(x^2+y^2+z^2+t^2-xy-yz-zt-tx+\frac{2}{5}=0\)=> vô nghiệm

Trương Việt Hoàng
Xem chi tiết
Ngọc Tuấn Lê
25 tháng 7 2016 lúc 18:46

đẳng thức trái luôn luôn lớn hơn đẳng thức phải(nhờ bđt coossi) đấu = xảy ra <=> x=2 và y=-3

Trương Việt Hoàng
25 tháng 7 2016 lúc 20:00

bạn nhầm rồi @Ngọc Tuấn Lê

Ngọc Tuấn Lê
25 tháng 7 2016 lúc 20:08
Sao nhầm
konomi
Xem chi tiết
alibaba nguyễn
19 tháng 8 2016 lúc 6:53
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
alibaba nguyễn
19 tháng 8 2016 lúc 7:02
Hai cái còn lại làm tương tự
alibaba nguyễn
19 tháng 8 2016 lúc 7:12
2/ GTNN của A là 0 khi x = -11
phạm văn trường
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 8 2021 lúc 16:25

\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)

\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)

Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:

\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)

Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)

\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng

Tương tự: ...

\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)

\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị