Bài 1: Cho 3 tỉ số bằng nhau
\(\frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b}\)
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{a+b}\)Tìm giá trị cuả mỗi tỉ số đó
Ta có:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+b+a}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy giá trị của mỗi tỉ số là:\(\frac{1}{2}\)
Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{a}{a+b}.\)
\(\Rightarrow\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)
Xét 2 trường hợp: Nếu a+b+c = 0
Và Nếu a+b+c = \(\frac{1}{2}\)
Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\),Xét 2 TH sau:
+Nếu a+b+c \(\ne\) 0 thì theo t/c dãy tỉ số=nhau:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
+Nếu a+b+c = 0 thì a+b=-c ; b+c=-a;c+a=-b
\(=>\frac{a}{b+c}=\frac{a}{-a}=1;\frac{b}{a+c}=\frac{b}{-b}=-1;\frac{c}{a+b}=\frac{c}{-c}=-1\)
\(=>\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=-1\)
Vậy............
Cho dãy tỉ số bằng nhau \(\frac{a+c}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) ( a, b, c đôi một khác nhau ). Tính P=\(\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{a}+1\right)\)
Bạn tham khảo ở đây nhé
Câu hỏi của Kim Tuyết Hà - Toán lớp 8 - Học toán với OnlineMath
Bài 1: Cho \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\)
Chứng minh rằng: Với 3 số a,b,c có tồn tại 2 số bằng nhau.
a/b+b/c+c/a=b/a+c/b+a/c
<=> a/b-b/a+b/c-c/b+c/a-a/c=0
<=> a^2c-c^2a+c^2b-b^2c+b^2a-a^2b=0
<=> ac(a-c)+bc(c-b)+ab(b-a)=0
<=> ac(a-c)+bc(c-a+a-b)+ab(b-a)=0
<=> ac(a-c)+bc(c-a)+bc(a-b)+ab(b-a)=0
<=> (a-c)(a-b)c+(a-b)(c-a)b=0
<=> (a-b)(c-a)(b-c)=0
<=> a=b hay c=a hay b=c
Vậy trong ba số a,b,c tồn tại 2 số =nhau
Cho 3 tỉ số bằng nhau:
\(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{b+a}\)
Tìm giá trị của mỗi tỉ số đó
1./ Nếu a + b + c = 0
\(\Rightarrow a=-\left(b+c\right)\Rightarrow\frac{a}{b+c}=-1\)
=> Giá trị các tỷ số đó = -1.
2./ Nếu a + b + c khác 0 thì:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Giá trị các tỷ số đó = 1/2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{b+a}\)
\(=\frac{a-b-c}{b+c-a-c-b-a}\)
\(=\frac{a-b-c}{-2a}\)
\(=>\frac{a}{b+c}=\frac{a-b-c}{-2a}\)
\(=>\frac{b}{a+c}=\frac{a-b-c}{-2a}\)
\(=>\frac{c}{b+a}=\frac{a-b-c}{-2a}\)
Cho 3 tỉ số bằng nhau là
\(\frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b}\)
Tính giá trị mỗi tỉ số đó
Từ \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{b+c}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Tương tự \(\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
Vậy \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
\(\Rightarrow2a=b+c\)
\(\Rightarrow2b=c+a\)
\(\Rightarrow2c=a+b\)
ta có hpt:
\(\hept{\begin{cases}2a=b+c\\2b=c+a\\2c=a+b\end{cases}\hept{\begin{cases}b=2a-c\\2b=c+a\\2c=a+b\end{cases}}}\)
thế b ta đc
\(\hept{\begin{cases}4a-2c=c+a\\2c=a+2a-c\end{cases}\hept{\begin{cases}3a-3c=0\\3c=3a=0\end{cases}\Rightarrow}}a=c\)
\(b=2a-c=a\)
\(\Rightarrow a=b=c\)vậy pt vô số nghiệm
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{a+b}\)
Biết a+b+c khác 0
Tính giá trị của mỗi tỉ số
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+c+a}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{1}{2}\)
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{a+b}\)
Biết a+b+c khác 0 . Tính giá trị của mỗi tỉ số
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{a+b+c}{b+c+a+c+a+b}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{a+b+c}{2.\left(a+b+c\right)}\)= \(\frac{1}{2}\)
=> \(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{1}{2}\)
T i c h cho mình nha
Bài 1Cho 3 số hữu tỉ a,b,c thỏa man abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
CMR trong 3 số a,b,c có 1 số bằng bình phương số còn lại
Bài 2 Cho a,b,c là các số khác 0 thỏa mãn \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính giá trị biểu thức \(P=\left(1+\frac{1}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
1/ Đặt
\(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z,xyz=1\)thì ta có
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow xy+yz+zx=x+y+z\)
\(\Leftrightarrow xyz-xy-yz-zx+x+y+z-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow x=1;y=1;z=1\)
\(\Rightarrow\frac{a}{b^2}=1;\frac{b}{c^2}=1;\frac{c}{a^2}=1\)
\(\Leftrightarrow a=b^2;b=c^2;c=a^2\)
2/ Đặt
\(ab=x,bc=y,ca=z\) cần tính
\(P=\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\left(1+\frac{y}{x}\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)
Xét \(x+y+z=0\)
\(\Rightarrow P=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-1\)
Xét \(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
mà nè đề bài câu 1 là abc=1 chứ có phải xyz=1 đâu
1. cho 3 số a,b,c hữu tỉ khác nhau
C/m \(\frac{1}{\left(b-c\right)^2}\)+\(\frac{1}{\left(c-a\right)^2}\)+\(\frac{1}{\left(a-b\right)^2}\)bằng bình phương 1 số hữu tỉ.
2. Cho a,b,c hữu tỉ thỏa mản: abc=1
\(\frac{a}{b^2}\)+\(\frac{b}{c^2}\)+\(\frac{c}{a^2}\)=\(\frac{a^2}{c}\)+\(\frac{b^2}{a}\)+\(\frac{c^2}{b}\)
C/m 1 trong 3 số là bình phương số hữu tỉ.