Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vua Hải Tặc Vàng
Xem chi tiết
Nguyễn Hưng Phát
9 tháng 7 2016 lúc 9:25

Ta có:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+b+a}\)

\(=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy giá trị của mỗi tỉ số là:\(\frac{1}{2}\)

Dương Lam Hàng
9 tháng 7 2016 lúc 9:27

Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{a}{a+b}.\)

\(\Rightarrow\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)

Xét 2 trường hợp: Nếu a+b+c = 0

                    Và Nếu a+b+c = \(\frac{1}{2}\)

Hoàng Phúc
9 tháng 7 2016 lúc 9:27

Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\),Xét 2 TH sau:

+Nếu a+b+c \(\ne\) 0 thì theo t/c dãy tỉ số=nhau:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

+Nếu a+b+c = 0 thì a+b=-c ; b+c=-a;c+a=-b

\(=>\frac{a}{b+c}=\frac{a}{-a}=1;\frac{b}{a+c}=\frac{b}{-b}=-1;\frac{c}{a+b}=\frac{c}{-c}=-1\)

\(=>\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=-1\)

Vậy............

nguyen cuc
Xem chi tiết
GV
1 tháng 11 2017 lúc 10:20

Bạn tham khảo ở đây nhé

Câu hỏi của Kim Tuyết Hà - Toán lớp 8 - Học toán với OnlineMath

nguyen van huy
Xem chi tiết
minhduc
5 tháng 12 2017 lúc 15:18

 a/b+b/c+c/a=b/a+c/b+a/c 
<=> a/b-b/a+b/c-c/b+c/a-a/c=0 
<=> a^2c-c^2a+c^2b-b^2c+b^2a-a^2b=0 
<=> ac(a-c)+bc(c-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a+a-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a)+bc(a-b)+ab(b-a)=0 
<=> (a-c)(a-b)c+(a-b)(c-a)b=0 
<=> (a-b)(c-a)(b-c)=0 
<=> a=b hay c=a hay b=c 
Vậy trong ba số a,b,c tồn tại 2 số =nhau

đào văn thái
Xem chi tiết
Đinh Thùy Linh
10 tháng 7 2016 lúc 8:14

1./ Nếu a + b + c = 0 

\(\Rightarrow a=-\left(b+c\right)\Rightarrow\frac{a}{b+c}=-1\)

=> Giá trị các tỷ số đó = -1.

2./ Nếu a + b + c khác 0 thì:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Giá trị các tỷ số đó = 1/2

o0o I am a studious pers...
10 tháng 7 2016 lúc 8:17

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{b+a}\)

\(=\frac{a-b-c}{b+c-a-c-b-a}\)

\(=\frac{a-b-c}{-2a}\)

\(=>\frac{a}{b+c}=\frac{a-b-c}{-2a}\)

\(=>\frac{b}{a+c}=\frac{a-b-c}{-2a}\)

\(=>\frac{c}{b+a}=\frac{a-b-c}{-2a}\)

Hoàng Trần Trà My
Xem chi tiết
Hoàng Thị Lan Hương
30 tháng 6 2017 lúc 15:28

Từ \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

Áp dụng tính chất của dãy tỉ  số bằng nhau ta có 

\(\frac{a}{b+c}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Tương tự \(\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)

Vậy \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)

Hoàng Như Quỳnh
16 tháng 10 2021 lúc 15:04

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

\(\Rightarrow2a=b+c\)
\(\Rightarrow2b=c+a\)

\(\Rightarrow2c=a+b\)

ta có hpt:

\(\hept{\begin{cases}2a=b+c\\2b=c+a\\2c=a+b\end{cases}\hept{\begin{cases}b=2a-c\\2b=c+a\\2c=a+b\end{cases}}}\)

thế b ta đc

\(\hept{\begin{cases}4a-2c=c+a\\2c=a+2a-c\end{cases}\hept{\begin{cases}3a-3c=0\\3c=3a=0\end{cases}\Rightarrow}}a=c\)

\(b=2a-c=a\)

\(\Rightarrow a=b=c\)vậy pt vô số nghiệm

Khách vãng lai đã xóa
Đỗ thị như quỳnh
Xem chi tiết
Isolde Moria
5 tháng 8 2016 lúc 11:01

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+c+a}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{1}{2}\)

 

An Trịnh Hữu
27 tháng 6 2017 lúc 11:12

Toán lớp 6

Tục Lễ Hay Học
Xem chi tiết
o0o I am a studious pers...
5 tháng 8 2016 lúc 10:53

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

\(\Rightarrow\frac{a+b+c}{b+c+a+c+a+b}\)

\(=\frac{a+b+c}{2\left(a+b+c\right)}\)

\(=\frac{1}{2}\)

 \(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)

Minh Bui Tuan Minh
5 tháng 8 2016 lúc 11:01

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{a+b+c}{2.\left(a+b+c\right)}\)\(\frac{1}{2}\)

=> \(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{1}{2}\)

T i c h cho mình nha

Quyết Tâm Chiến Thắng
Xem chi tiết
alibaba nguyễn
27 tháng 8 2019 lúc 8:31

1/ Đặt

\(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z,xyz=1\)thì ta có

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow xy+yz+zx=x+y+z\)

\(\Leftrightarrow xyz-xy-yz-zx+x+y+z-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow x=1;y=1;z=1\)

\(\Rightarrow\frac{a}{b^2}=1;\frac{b}{c^2}=1;\frac{c}{a^2}=1\)

\(\Leftrightarrow a=b^2;b=c^2;c=a^2\)

alibaba nguyễn
27 tháng 8 2019 lúc 8:42

2/ Đặt

\(ab=x,bc=y,ca=z\) cần tính

\(P=\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\left(1+\frac{y}{x}\right)\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)

Xét \(x+y+z=0\)

\(\Rightarrow P=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-1\)

Xét \(x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Quyết Tâm Chiến Thắng
27 tháng 8 2019 lúc 18:19

mà nè đề bài câu 1 là abc=1 chứ có phải xyz=1 đâu

Thảo Nguyên Xanh
Xem chi tiết