Cho tam giác ABC vuông tại A có đường cao AH. Gọi E,F lần lượt là hình chiếu vuông góc của H trên AB,AC.
a) Cho AB=3cm, góc ACB=30 độ. Tính độ dài AC,HA
b) Chứng minh BE.BA+CF.CA+2HB.HC=BC^2
c) Biết BC=6cm. Tìm GTLN của diện tích tứ giác HEAF
cho tam giác ABC vuông tại A co đường cao AH. Gọi E,F lần lượt là hình chiếu vuông góc của H trên AB,AC.
a) Cho AB=3cm, góc ACB=30 độ. Tính độ dài AC,HA
b) Chứng minh BE.BA+CF.CA+2HB.HC=BC^2
c) Biết BC=6cm. Tìm GTLN của diện tích tứ giác HEAF
Cao nhân nào đi qua giúp tôi câu c :((((((
cho tam giác ABC vuông tại A co đường cao AH. Gọi E,F lần lượt là hình chiếu vuông góc của H trên AB,AC.
a) Cho AB=3cm, góc ACB=30 độ. Tính độ dài AC,HA
b) Chứng minh BE.BA+CF.CA+2HB.HC=BC^2
c) Biết BC=6cm. Tìm GTLN của diện tích tứ giác HEAF
bạn tự giải nhé
cho tam giác abc vuông tai A đường cao ah goi e và f là hình chiếu của h trên ab,ac biết ab=3 cm góc C=3O đô
tính ac,ha
chứng minh be.ba+cf.ca+2hb.hc=bc^2
biết bc=6 cm tìm giá tri lớn nhất của diên tích tứ giác heaf
hình bạn tự vẽ nhé
ta có bc=6 nên thep py ta go ta có \(ac^2=bc^2-ab^2=27=>ac=3\sqrt{3}\)
áp dụng hệ thức lượng ta có
\(AB^2=BH.BC=>BH=\frac{9}{6}=\frac{3}{2}\)
=>HC=\(\frac{9}{2}\)
TA CÓ \(AH^2=HB.HC=\frac{27}{4}=>AH=\frac{3\sqrt{3}}{2}\)
c, trên bc ta lấy m là trung điiểm bc
ta có \(AH^2=AE.AB=>AE=\frac{AH^2}{AB}\)
\(AH^2=AF.AC=>AF=\frac{AH^2}{AC}\)
\(SAFHE=AE.AF=\frac{AH^4}{AC.AB}=\frac{AH^3}{BC}< =\frac{AM^3}{BC}=\frac{AM^2}{2}=\frac{9}{2}\)
DẤU "=" XẢY RA KHI H TRÙNG VỚI M
cho tam giác ABC vuông tại A có đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB,AC. cho BH= 3cm, CH= 12cm
a, tính độ dài các cạnh AB,AC
b, chứng minh HF= 2HE
c, từ C kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đường thẳng AB tại I, kẻ AK vuông góc với CI tại K. chứng minh
CI^3/CB^3= IK/BH
a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)
b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)
=>HF=2HE
Cho tam giác ABC vuông tại A, có đường cao AH. Gọi E và F lần lượt là hình chiếu vuông góc của H trên AB, AC
a,Cho biết AB=3cm, góc ACB=30 độ. Tính độ dài các đoạn AC,HA (câu này mk đã làm)
b,Chứng minh: BE.BA+CF.CA+2HB.HC=BC\(^2\)
2) Cho tam giác ABC vuông tại A, đường cao AH. a) Giả sử AB = 6cm AC = 8cm hãy tính độ dài đoạn thẳng BC, AH,ACB (số đo góc làm tròn đến phút). b) Gọi điểm E và F lần lượt là hình chiếu của điểm H trên cạnh AB,AC . Chứng minh rằng AE .AB=AF.AC, từ đó suy ra AFE = ABC c) Đường trung tuyến AI của tam giác ABC cắt cạnh EF tại K. Chứng minh rằng: 3 = (KF)/(BC) cos^3 B .sin B= x- n-
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=4,8cm
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)
=>\(\widehat{ACB}\simeq36^052'\)
b: ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF đồng dạng với ΔACB
=>\(\widehat{AFE}=\widehat{ABC}\)
Cho tam giác ABC vuông tại A , đường cao AH , AB = 3cm , BC = 5cm
a) giải tam giác ABC
b) gọi E , F , lần lượt là hình chiếu H trên cạnh AB và AC
- TÍnh độ dài AH
- Chứng minh EF = AH
Bạn tự vẽ hình.
(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)
+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)
(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)
\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.
Do đó, \(EF=AH\left(đpcm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
*Cho tam giác ABC vuông tại A, đường cao AH, AB = 3cm, BC= 6cm. Gọi E, F lần lượt là hình chiếu của AH trên cạnh AB, AC.
a. Tính độ dài AC và tìm số đo góc B và C.
b. Tính độ dài AH và chứng minh EF=AH.
c. Tính EA.EB + FA.FC.