Chứng minh\(\sqrt{3+\sqrt{3+......+\sqrt{3}}}\)( 2019 dấu căn ) < 2
Chứng minh:
\(A=\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}\left(2016\text{ dấu căn}\right)}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}\left(2015\text{ dấu căn }\right)}<\frac{1}{4}\)
nếu là toán lớp 9 thì bạn vào hoc24.vn để đăng câu hỏi nha bạn
Ai đồng ý thì cho ít **** !!!
Toán lớp 9 phải vào Học.24h.
Quản lý bảo thế!!!
Cho biểu thức: \(M=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\)
Tử có 2014 dấu căn, mẫu có 2013 dấu căn.
Chứng minh \(M< \frac{1}{4}\)
Cho biểu thức:
\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+....+\sqrt{3}}}}}\)
Tử có 2017 dấu căn, mẫu có 2016 dấu căn. Chứng minh \(A< \frac{1}{4}\)
Chứng minh rằng \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\) (ở tử có n dấu căn. ở mẫu có n-1 dấu căn)
Chứng minh rằng \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\) ( ở tử có n dấu căn, ở mẫu có n-1 dấu căn )
Chứng minh rằng: \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\)( ở tử có n dấu căn, ở mẫu có n - 1 dấu căn)
gải phương trình \(\sqrt[3]{x}-3\sqrt[3]{x}=20\)
gải phương trình\(x\sqrt[]{\frac{1}{x}}-2x\sqrt[3]{x}=20\)
cho biểu thức
\(M=\dfrac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{ }}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+..\sqrt{3}}}}}\)
tử số co 2014 dấu căn, mẫu số có 2013 dấu căn. chứng minh: M<\(\dfrac{1}{4}\)
Ta có :Đặt t = \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}} ( 2014 dấu căn )\)
\(\Rightarrow\) t > \(\sqrt{3} > \sqrt{1} = 1\)
\(\Rightarrow\) \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}\)(2013 dấu căn ) = \(t^2 -3\)
Do đó : \(M = \frac{3-t}{6-( t^2 - 3 )}\)= \(\frac{3-t}{9-t^2}\) = \(\frac{3-t}{(3-t)(3+t)}\) = \(\frac{1}{3+t}\)
Vì t>1 \(\Rightarrow\) 3+t > 4 \(\Rightarrow\) \(\frac{1}{3+t}\) < \(\frac{1}{4}\)
Vậy M < \(\frac{1}{4}\)
Chứng minh rằng \(\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...\sqrt{3}}}}}
Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))
Ta c/m \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>1\) (2010 dấu căn) (1)
Thật vậy: \(VT>\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{1}}}}\)
\(=\sqrt{3+\sqrt{3+\sqrt{3+1}}}=\sqrt{3+\sqrt{3+2}}=\sqrt{3+\sqrt{5}}>2\)
Vậy (1) đúng
Đặt \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a\left(a>2\right)\) (có 2010 dấu căn)
Suy ra \(3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}=a^2\) (có 2009 dấu căn)
Suy ra \(\sqrt{3+\sqrt{3+...+\sqrt{3}}}=a^2-3\)
Thay vào,ta có: \(VT=\frac{3-a}{6+3-a^2}=\frac{3-a}{9-a^2}=\frac{3-a}{\left(3-a\right)\left(3+a\right)}=\frac{1}{3+a}\)
Mà a > 2 nên \(VT=\frac{1}{3+a}< \frac{1}{3+2}=\frac{1}{5}< \frac{1}{4}^{\left(đpcm\right)}\) (không chắc nha!)
Cho biểu thức \(A=\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}\) tử có 2010 dấu căn, mẫu có 2009 dấu căn. Chứng minh A < 1/4