Ta có :Đặt t = \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}} ( 2014 dấu căn )\)
\(\Rightarrow\) t > \(\sqrt{3} > \sqrt{1} = 1\)
\(\Rightarrow\) \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}\)(2013 dấu căn ) = \(t^2 -3\)
Do đó : \(M = \frac{3-t}{6-( t^2 - 3 )}\)= \(\frac{3-t}{9-t^2}\) = \(\frac{3-t}{(3-t)(3+t)}\) = \(\frac{1}{3+t}\)
Vì t>1 \(\Rightarrow\) 3+t > 4 \(\Rightarrow\) \(\frac{1}{3+t}\) < \(\frac{1}{4}\)
Vậy M < \(\frac{1}{4}\)