Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Quỳnh
Xem chi tiết
Nguyễn Hoàng Tiến
15 tháng 6 2016 lúc 16:44

a)Nhận xét:

\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) nên tổng chúng bằng 0 khi cả 2 bằng 0

<=> \(x=0;y=-\frac{1}{10}\)

b) \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\) nên không tìm được giá trị x và y thoả mãn đề bài.

Trần Cao Anh Triết
15 tháng 6 2016 lúc 16:51

a)Như ta đã thấy:

\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) Nên tổng trên = 0 khi 2 số hạng bằng 0

=> x=  0 và y = -1/10

b) vì: 

\(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

Nguyễn Lê Quỳnh Chi
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết
ღAlice Nguyễn ღ
Xem chi tiết
Hoàng Lê Bảo Ngọc
29 tháng 9 2016 lúc 11:45

a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)

Để dấu "=" xảy ra thì x = 0 , y = 1/10

b/ Tương tự.

Lương Thùy Linh
Xem chi tiết
Thượng Hoàng Yến
Xem chi tiết
Nguyễn Anh Quân
30 tháng 11 2017 lúc 20:13

a, x = 0 ; y = 1/10

b, x = 10 ; y = 1/2 hoặc y = -1/2

k mk nha

Kaori Miyazono
30 tháng 11 2017 lúc 20:19

1, \(x^2+\left(y-\frac{1}{10}\right)^4=0\)          (1)

Ta thấy \(x^2\ge0;\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y nên \(x^2+\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y              (2)

Từ (1) và (2) suy ra 

\(\hept{\begin{cases}x^2=0\\y-\frac{1}{10}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}}\)

2, \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\le0\) (1)

Ta thấy \(\left(\frac{1}{2}x-5\right)^{20}\ge0\Rightarrow\left(\frac{1}{2}x-5\right)^{20^2}\ge0\)với mọi x

\(\left(y^2-\frac{1}{4}\right)^{10}\ge0\)với mọi y

Suy ra \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)(2)

Từ (1) và (2) suy ra 

\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=10\\y\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\end{cases}}}\)

Vậy....

Trần Việt Hà
Xem chi tiết
Huynh Thi Nghia
23 tháng 9 2016 lúc 20:01

a) x=0;y=1/10

b) x=10;y=1/2

Đỗ Nhật Nam
Xem chi tiết
soyeon_Tiểubàng giải
23 tháng 9 2016 lúc 20:32

a) Vì \(x^2\ge0;\left(y-\frac{1}{10}\right)^2\ge0\)

Mà theo đề bài: \(x^2+\left(y-\frac{1}{10}\right)^2=0\)

=> \(\begin{cases}x^2=0\\\left(y-\frac{1}{10}\right)^2=0\end{cases}\) => \(\begin{cases}x=0\\y-\frac{1}{10}=0\end{cases}\) => \(\begin{cases}x=0\\y=\frac{1}{10}\end{cases}\)

Vậy \(x=0;y=\frac{1}{10}\)

b) Vì \(\left(\frac{1}{2}x-5\right)^{26}\ge0;\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{26}+\left(y^2-\frac{1}{4}\right)^{10}=0\)

=> \(\begin{cases}\left(\frac{1}{2}x-5\right)^{26}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\)=> \(\begin{cases}x=10\\y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\end{cases}\)

Vậy \(x=10;y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\)

bùivân trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 13:27

a: \(\Leftrightarrow x\cdot\dfrac{4}{3}=\dfrac{5}{6}+\dfrac{1}{4}=\dfrac{13}{12}\)

\(\Leftrightarrow x=\dfrac{13}{12}:\dfrac{4}{3}=\dfrac{13}{12}\cdot\dfrac{3}{4}=\dfrac{39}{48}=\dfrac{13}{16}\)

b: \(\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

=>x-1/2=5/6 hoặc x-1/2=-5/6

=>x=4/3 hoặc x=-1/3

c: \(\left(x+20\right)^{100}+\left|y+4\right|=0\)

=>x+20=0 và y+4=0

=>x=-20 và y=-4