Cho tam giác ABC vuông tại A, đường cao AH. Biết AB:AC=3:4 và BC=15cm.Tính BH và HC
cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB:AC=3:4 và AH=6cm. Tính BH,HC
Ta có: AB:AC=3:4
nên \(AB=\dfrac{3}{4}AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{4}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}=\dfrac{1}{36}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{\dfrac{9}{16}}{\dfrac{9}{16}AC^2}=\dfrac{1}{36}\)
\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=36\cdot\dfrac{25}{16}=\dfrac{225}{4}\)
\(\Leftrightarrow AC^2=100\)
hay AC=10(cm)
Ta có: \(AB=\dfrac{3}{4}AC\)
nên \(AB=\dfrac{3}{4}\cdot10=7.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=7.5^2-6^2=4.5^2\)
hay BH=4,5(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=10^2-6^2=64\)
hay HC=8(cm)
Cho tam giác ABC vuông tại A, đường cao AH cho AB:AC= 3:4 và AH= 12cm tính BH và HC
Xét tam giác vuông AHB và CHA có :
góc AHB = góc CHA = 90độ
góc ABH = góc CAH ( cùng phụ với góc C )
Vậy tam giác AHB đồng dạng tam giác CHA ( g.g )
Suy ra : \(\frac{AH}{HC}=\frac{AB}{CA}\) ( 1 )
Theo đề bài \(\frac{AB}{AC}=\frac{3}{4}\) và AH = 12cm ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{12}{HC}=\frac{3}{4}\Rightarrow HC=\frac{12.4}{3}=16\) ( cm )
Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{12^2}{16}=9\) ( cm )
Vậy BH = 9cm , HC = 16cm
Học tốt
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AB:AC=3:4 và BC=15cm. Tính BH? CH?
Lời giải:
Vì $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$
Áp dụng định lý Pitago:
$AB^2+AC^2=BC^2$
$\Leftrightarrow (3a)^2+(4a)^2=225$
$\Leftrightarrow 25a^2=225$
$\Rightarrow a=3$ (do $a>0$)
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9a^2}{15}=\frac{9.3^2}{15}=5,4$ (cm)
$AC^2=CH.CB\Rightarrow CH=\frac{AC^2}{BC}=\frac{16a^2}{15}=\frac{16.3^2}{15}=9,6$ (cm)
Cho tam giác ABC vuông tại A đường cao AH
Biết AB:AC=5:7 ;AH=15cm.TínhAB,AC,BC,BH,HC
B1: đường cao của một tam giác vuông chia cạnh huyền thành 2 đoạn thẳng có độ dài là 3 và 4. hãy tính các cạnh góc vuông của tam giác này
B2:Cho tam giác ABC có A=90 độ đường cao AH . Biết AB:AC=3:4, BC=15 . Tính BH và HC
B3: Cho tam giác ABC có đường cao AH , trung tuyến AM. Biết AH =12cm, AM=13cm. Tính HB , HC.
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
Oh 2015 tuong ms dang chu :v
Cho tam giác abc vuông tại a .ah cắt bc ( h thuộc bc) cho biết ab:ac=3:4 và bc=15 cm
Tính độ dài các đoạn thẳng bh và hc
AB/AC=3/4
=>BH/CH=9/16
=>BH/9=CH/16=(BH+CH)/(9+16)=15/25=0,6
=>BH=5,4cm; CH=9,6cm
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC). Biết AB:AC = 3:4, BC = 5 cm
a) Tính BH, HC
b) Kẻ phân giác AD (D thuộc BC). Tính HD
Cho tam giác ABC VUÔNG TẠI a, đường cao AH
a) Biết AB;AC=3:4 và BC=125. Tính BH,CH
b)Biết AB:AC=5:6 và AH=30. Tính BH,CH
Cho ∆ vuông ABC, đường cao AH. Biết AB:AC = 3:4 và BC= 15cm. Tính BH và HC
Ta có: \(\Delta ABC\) vuông tại A ( Đường cao AH )
Ta thấy \(AB:AC=3:4\)
Mà đây là 2 cạnh góc vuông
\(\Rightarrow\) Đây là bộ số Pytago: \(AB:AC:BC=3:4:5\)
Từ đó ta tính được số đo của \(\left\{{}\begin{matrix}AB=9\\AC=12\end{matrix}\right.\)
Xét \(\Delta ABC\) vuông tại A:
Theo hệ thức lượng trong \(\Delta\) vuông ta được:
+ \(AC^2=HC.BC\Rightarrow HC=\dfrac{AC^2}{BC}=9,6\left(cm\right)\)
+ \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\)
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)