Bài1
g(x)=-(3x+7)2+2(3x+7)-17
Chứng minh g(x)< -16 với mọi x
Cho g(x) = -(3x + 7)\(^2\) + 2(3x +7) - 17.
a. Chứng minh g(x) < 0 với mọi x.
b. Tìm GTLN của g(x).
a) \(g\left(x\right)=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)
\(g\left(x\right)=-\left(9x^2+42x+49\right)+6x+14-17\)
\(g\left(x\right)=-9x^2-42x-49+6x+14-17\)
\(g\left(x\right)=-9x^2-36x-52=-\left(9x^2+36x+36\right)-16\)
\(g\left(x\right)=-\left(3x+6\right)^2-16\)
ta có : \(\left(3x+6\right)\ge0\) với mọi giá trị của \(x\)
\(\Rightarrow-\left(3x+6\right)\le0\) với mọi giá trị của \(x\)
\(\Leftrightarrow-\left(3x+6\right)-16\le-16< 0\) với mọi giá trị của \(x\) (đpcm)
b) ta có : \(g\left(x\right)=-\left(3x+6\right)^2-16\le-16\) với mọi giá trị của \(x\) (chứng minh trên)
\(\Rightarrow\) GTLN của \(g\left(x\right)\) là \(-16\) khi \(-\left(3x+6\right)^2=0\Leftrightarrow3x+6=0\Leftrightarrow3x=-6\Leftrightarrow x=\dfrac{-6}{3}=-2\)
vậy GTLN của \(g\left(x\right)\) là \(-16\) khi \(x=-2\)
a) \(g\left(x\right)=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)
\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right).1+1+16\right]\)
\(=-\left(3x+7-1\right)^2-16\)
\(=-\left(3x+6\right)^2-16\)
Ta có: \(-\left(3x+6\right)^2\le0\forall x\Rightarrow-\left(3x+6\right)^2-16< 0\forall x\)
\(\Rightarrow\) đpcm
b) Dấu "=" xảy ra khi 3x + 6 = 0 hay x = -2
Vậy GTLN của g(x) là -16 khi x =-2.
Cho g(x) = -(3x + 7)\(^2\) + 2(3x +7) - 17
a. Chứng minh g(x) < 0 với mọi x.
b. Tìm GTLN của g(x).
a: \(g\left(x\right)=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+17\right]\)
\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+1+16\right]\)
\(=-\left(3x-6\right)^2-16< 0\)
b: \(g\left(x\right)=-\left(3x-6\right)^2-16\le-16\)
Dấu '=' xảy ra khi x=2
Bài1:Rút gọn
a,(4x-5)(3x+2)-(7-3x)(x+2)
b,(-2x+1)(x-5)-3(x-2)(x+1)
c,(x^2-7)(x-5)+(3x^2+5)(2x-4)
d,(x^2+3x-2)(x+4)-4x(x-5)
Bài2:Tìm xbiết
a,(x-4)(x+3)-(x+1)(x-5)=8
b,(3x-2)(x+1)-3x(x+7)=13
c,(x+5)(x-5)-x(x+2)=9
d,(x-1)(x^2+x+1)-x(x^2-3)=1
2:
a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8
=>x^2-x-12-x^2+4x+5=8
=>3x-7=8
=>3x=15
=>x=5
b: =>3x^2+3x-2x-2-3x^2-21x=13
=>-20x=15
=>x=-3/4
c: =>x^2-25-x^2-2x=9
=>-2x=25+9=34
=>x=-17
d: =>x^3-1-x^3+3x=1
=>3x-1=1
=>3x=2
=>x=2/3
Tính(x)+g(x)và f(x)-f(x)với:
a)f(x)=x^5-3x^2+x^3-x^2-2x+5;g(x0=x^2-3x+1+x^2-x^4+X^5
b)f(x)=x^7-3x^2-x^5+x^4-x^2+2x-7;g(x)=x-2x^2+x^4-X^5-x^7-4x^2-1
cac ban giai giup minh cau nay voi
g) x(x-2)-x2 = 5x-7
H) 3x(x-7)+2(x-7)=0
g/ x(x-2)-x2=5x-7
\(\Leftrightarrow x^2-2x-x^2=5x-7\\ \Leftrightarrow7x=7\Leftrightarrow x=1\)
h/\(3x\left(x-7\right)+2\left(x-7\right)=0\\ \Leftrightarrow3x^2-19x-14=0\\ \)
\(\Leftrightarrow\left(x-7\right)\left(3x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\frac{2}{3}\end{matrix}\right.\)
Cho hàm số: g ( x ) = - 2 x 3 - 3 x + 5 và f ( x ) = x 2 + 2 + 2 - x . Tính f(-7)-g(-7)
Cho F(x)=3x^2-7+5x-6x^2-4x^2+8
G(x)=x^4+2x-1+2x^4+3x^3+2-x
a,Thu gọn và tìm bặc của F và G
b,Tính F+G và F -G
`@` `\text {Ans}`
`\downarrow`
`a,`
` F(x)=3x^2-7+5x-6x^2-4x^2+8`
`= (3x^2 - 6x^2 - 4x^2) + 5x + (-7 + 8)`
`= -7x^2 + 5x + 1`
Bậc của đa thức: `2`
`G(x)=x^4+2x-1+2x^4+3x^3+2-x`
`= (x^4 + 2x^4) + 3x^3 + (2x - x) + (-1+2)`
`= 3x^4 + 3x^3 + x + 1`
Bậc của đa thức: `4`
`b,`
`F(x) + G(x) = (-7x^2 + 5x + 1)+(3x^4 + 3x^3 + x + 1)`
`= -7x^2 + 5x + 1+3x^4 + 3x^3 + x + 1`
`= 3x^4 + 3x^3 - 7x^2 + (5x + x) + (1+1)`
`= 3x^4 + 3x^3 - 7x^2 + 6x + 2`
`F(x) - G(x) = (-7x^2 + 5x + 1) - (3x^4 + 3x^3 + x + 1)`
`= -7x^2 + 5x + 1 - 3x^4 - 3x^3 - x - 1`
`= -3x^4 - 3x^3 - 7x^2 + (5x - x) + (1-1)`
`= -3x^4 - 3x^3 - 7x^2 + 4x`
a/
\(F\left(x\right)=\left(3-6-4\right)x^2+5x+\left(-7+8\right)=-7x^2+5x+1\) -> Đa thức bậc 2
\(G\left(x\right)=\left(1+2\right)x^4+3x^3+\left(2-1\right)x+\left(-1+2\right)=3x^4+3x^3+x+1\) -> Đa thức bậc 4
b/
\(F\left(x\right)+G\left(x\right)=-7x^2+5x+1+3x^4+3x^3+x+1\\ =3x^4+3x^3-7x^2+6x+2\)
\(F\left(x\right)-G\left(x\right)=-7x^2+5x+1-3x^4-3x^3-x-1\\ =-3x^4-3x^3-7x^2+4x\)
Bài1:chứng minh các biểu thức luôn nhận giá trị âm với mọi x:
a)A=-x^2+2x-3. b)C=-x^2+4x-7
c)D=-2x^2-6x-5. d)E=-3x^2+4x-4
e)F=-5x^2-3x-5
a, \(A=-x^2+2x-3=-\left(x^2-2x+1-1\right)-3=-\left(x-1\right)^2-2\le-2< 0\forall x\)
Vậy ta có đpcm
b, \(C=-x^2+4x-7=-\left(x^2-4x+4-4\right)-7=-\left(x-2\right)^2-3\le-3< 0\forall x\)
Vậy ta có đpcm
c, \(D=-2x^2-6x-5=-2\left(x^2+\frac{2.3}{2}x+\frac{9}{4}-\frac{9}{4}\right)-5\)
\(=-2\left(x+\frac{3}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)
Vậy ta có đpcm
d, \(E=-3x^2+4x-4=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}-\frac{4}{9}\right)-4\)
\(=-3\left(x-\frac{2}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}< 0\forall x\)
Vậy ta có đpcm
e, tự làm nhé
Câu 1: Cho f(x) = −2x
4 + 3x
3 − 4x
2 + x − 7 và g(x) = −x
4 + 2x
3 − 3x
2 − x
3 + 3x
4 − 17. Khi
đó M(x) = f(x) + g(x)
Câu 2: Cho đa thức f(x) = −x
4 + 2x
3 − 5x
2 + 7x − 3 và g(x) = −3x
4 + 2x
3 − 7x + 5. Biết
M(x) = f(x) − g(x). Tính M(1) =?