Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Quỳnh Phan

Cho g(x) = -(3x + 7)\(^2\) + 2(3x +7) - 17.
a. Chứng minh g(x) < 0 với mọi x.
b. Tìm GTLN của g(x).

Mysterious Person
11 tháng 8 2017 lúc 9:09

a) \(g\left(x\right)=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)

\(g\left(x\right)=-\left(9x^2+42x+49\right)+6x+14-17\)

\(g\left(x\right)=-9x^2-42x-49+6x+14-17\)

\(g\left(x\right)=-9x^2-36x-52=-\left(9x^2+36x+36\right)-16\)

\(g\left(x\right)=-\left(3x+6\right)^2-16\)

ta có : \(\left(3x+6\right)\ge0\) với mọi giá trị của \(x\)

\(\Rightarrow-\left(3x+6\right)\le0\) với mọi giá trị của \(x\)

\(\Leftrightarrow-\left(3x+6\right)-16\le-16< 0\) với mọi giá trị của \(x\) (đpcm)

b) ta có : \(g\left(x\right)=-\left(3x+6\right)^2-16\le-16\) với mọi giá trị của \(x\) (chứng minh trên)

\(\Rightarrow\) GTLN của \(g\left(x\right)\)\(-16\) khi \(-\left(3x+6\right)^2=0\Leftrightarrow3x+6=0\Leftrightarrow3x=-6\Leftrightarrow x=\dfrac{-6}{3}=-2\)

vậy GTLN của \(g\left(x\right)\)\(-16\) khi \(x=-2\)

Nháy >.<
11 tháng 8 2017 lúc 9:12

a) \(g\left(x\right)=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)

\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right).1+1+16\right]\)

\(=-\left(3x+7-1\right)^2-16\)

\(=-\left(3x+6\right)^2-16\)

Ta có: \(-\left(3x+6\right)^2\le0\forall x\Rightarrow-\left(3x+6\right)^2-16< 0\forall x\)

\(\Rightarrow\) đpcm

b) Dấu "=" xảy ra khi 3x + 6 = 0 hay x = -2

Vậy GTLN của g(x) là -16 khi x =-2.


Các câu hỏi tương tự
Trang Quỳnh Phan
Xem chi tiết
Khải Nguyễn
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
Vũ Hà Khánh Linh
Xem chi tiết
Khải Nguyễn
Xem chi tiết
Phúc Nguyễn
Xem chi tiết
Bi Mai
Xem chi tiết
Võ Hồ Như Thủy
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết