Rút gọn:
\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
Rút gọn biểu thức: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{\left(x^2+2xy+y^2\right)+xy+y^2}{\left(x^3+x^2y+xy^2+y^3\right)+x^2y-2xy^2-3y^3}\)
\(=\frac{\left(x+y\right)^2+y\left(x+y\right)}{\left(x+y\right)^3+y.\left(x^2-2xy-2y^2\right)}\)
Rút gọn phân thức x^2+3xy+2y^2/x^3+2x^2y-xy^2-2y^3
\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\dfrac{\left(x+y\right)\left(x+2y\right)}{x\left(x^2-y^2\right)+2y\left(x^2-y^2\right)}\)
\(=\dfrac{x+y}{x^2-y^2}\)
\(=\dfrac{1}{x-y}\)
Rút gọn :
b ) \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
Giup mình bài này nữa thôi nha
Rút gọn :
b ) \(\frac{x^2+3xy+2y^2}{x^2+2x^2y-xy^2-2y^2}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^3-xy^2+2x^2y-2y^3}\)
\(=\frac{x\left(x+4\right)+2y\left(x+y\right)}{x\left(x^2-y^2\right)+2y\left(x^2-y^2\right)}\)
\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x-y\right)\left(x+y\right)\left(x+2y\right)}\)
\(=\frac{1}{x-y}\)
Rút gọn biểu thức sau : x^2+3xy+2y^2 / x^3+2x^2 + xy^2 + 2y^3
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Rút gọn phân thức
P= x^2 +3xy +2y^2 / x^3 + 2x^2.y +xy - 2y^2
Rút gọn phân thức:
\(a,\dfrac{x^2-x-6}{x^2+7x+10}\)
\(b,\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(\frac{x^2-x-6}{x^2+7x+10}\)
\(=\frac{x^2-3x+2x-6}{x^2+5x+2x+10}=\frac{x.\left(x-3\right)+2.\left(x-3\right)}{x.\left(x+5\right)+2.\left(x+5\right)}\)
\(=\frac{\left(x+2\right).\left(x-3\right)}{\left(x+2\right).\left(x+5\right)}=\frac{x-3}{x+5}\)
Rút gọn
a) \(\frac{a+b}{a^3+b^3}\)
b\(\frac{x^2-3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
Hai câu này mình hơi bí, bạn nào biết giúp mình nhé! Thanks nhiều!
Rút gọn biểu thức
A= \(1+\left[\frac{2x^3y^2+2x^2y^3}{x+y}:\left(\frac{2x^2y^2}{x^2+xy}+\frac{2x^2y^2}{y^2+xy}\right)\right]\)