Với các số dương x,y,z. Chứng minh x^2/x+y -x/2 +y^2/y+z -y/2 +z^2/z+x -z/2 >=0
Chứng minh rằng x^2/y^2 +y^2/z^2 +z^2/x^2 >= x/y +y/z +z/x với các số dương x;y;z
\(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\rightarrow\left(a;b;c\right)\) thì abc = 1. BĐT
\(\Leftrightarrow a^2+b^2+c^2\ge a+b+c\). Mà \(VT=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\).
Do đó ta chỉ cần chứng minh \(\frac{\left(a+b+c\right)^2}{3}\ge a+b+c\).Hay:
\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow f\left(t\right)=t^2-3t\ge0\) với \(t=a+b+c\ge3\sqrt[3]{abc}=3\). Điều này hiển nhiên đúng do
\(f\left(t\right)=t^2-3t=t\left(t-3\right)\ge t\left(3-3\right)=0\) với mọi t > 3
Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1 hay x = y = z
P/s: Sai thì chịu
Cho \(x;y;z\) là các số thực dương . Chứng minh rằng \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Áp dụng BĐT cosi cho 3 số x;y;z dương
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2\sqrt{\dfrac{x^2y^2}{y^2z^2}}=\dfrac{2x}{z}\\ \dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{y^2z^2}{x^2z^2}}=\dfrac{2y}{z}\\ \dfrac{x^2}{y^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2}{x^2y^2}}=\dfrac{2z}{y}\)
Cộng vế theo vế
\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\)
\(\LeftrightarrowĐpcm\)
Với các số dương x;y;z. Chứng minh
\(\frac{x^2}{x+y}-\frac{x}{2}+\frac{y^2}{y+z}-\frac{y}{2}+\frac{z^2}{z+x}-\frac{z}{2}\ge0\)
\(\Leftrightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\)
\(\Leftrightarrow\frac{x\left(x+y\right)-xy}{x+y}+\frac{y\left(y+z\right)-yz}{y+z}+\frac{z\left(z+x\right)-xz}{z+x}\ge\frac{x+y+z}{2}\)
\(\Leftrightarrow x+y+z-\frac{xy}{x+y}-\frac{yz}{y+z}-\frac{xz}{z+x}\ge\frac{x+y+z}{2}\)
\(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{zx}{z+x}\le\frac{x+y+z}{2}\)
\(x+y\ge2\sqrt{xy}\Rightarrow\frac{xy}{x+y}\le\frac{xy}{2\sqrt{xy}}=\frac{\sqrt{xy}}{2}\le\frac{x+y}{4}\)
tương tự rồi cộng vế với vế suy ra đpcm
Với x, y, z là các số dương, chứng minh:
2(1/x+y + 1/y+z + 1/z+x) >= 9/x+y+z
Áp dụng Bunhiacopxki dạng phân thức:
\(VT=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\ge\frac{\left(\sqrt{2}.3\right)^2}{2\left(x+y+z\right)}=\frac{9}{x+y+z}\)
Dấu "=" khi x = y = z > 0
cũng là Cauchy-Schwarz dạng Engel nhưng làm khác idol :))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{\left(1+1+1\right)^2}{x+y+y+z+z+x}=\frac{9}{2\left(x+y+z\right)}\)
=> \(2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{9}{2\left(x+y+z\right)}\cdot2=\frac{9}{x+y+z}\left(đpcm\right)\)
Đẳng thức xảy ra <=> x=y=z
cho x,y,z là các số thực dương và x^2+y^2+z^2=x+y+z. chứng minh rằng x+y+z+3>=6 căn 3 xy+yz+xz/3. Mn giải giúp mình với ạ
cho x,y,z là các số dương. chứng minh rằng:
\(\dfrac{x^2}{y+2015z}+\dfrac{y^2}{z+2015x}+\dfrac{z^2}{x+2015y}\ge\dfrac{x+y+z}{2016}\)
Cho các số nguyên dương x, y và z sao cho x^2 = (z − y)(z + y − 2). Chứng minh rằng xy − x chia hết cho x + y − z.
Cho x, y, z thuộc số dương và :
A=(x^2 /x+y)+(y^2/y+z)+(z^2/z+x)
B=(y^2/x+y)+(z^2/y+z)+(x^2/z+x)
Chứng minh A=B
cho các số dương x,y,z chứng minh rằng:
\(\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}\)+\(\dfrac{y^2}{\left(y+z\right)\left(y+x\right)}\)+\(\dfrac{z^2}{\left(z+x\right)\left(z+y\right)}\)≥\(\dfrac{3}{4}\)