Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Bảo Vy
Xem chi tiết
tth_new
5 tháng 8 2019 lúc 9:50

\(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\rightarrow\left(a;b;c\right)\) thì abc = 1. BĐT

\(\Leftrightarrow a^2+b^2+c^2\ge a+b+c\). Mà \(VT=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\).

Do đó ta chỉ cần chứng minh \(\frac{\left(a+b+c\right)^2}{3}\ge a+b+c\).Hay:

 \(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\) 

\(\Leftrightarrow f\left(t\right)=t^2-3t\ge0\) với \(t=a+b+c\ge3\sqrt[3]{abc}=3\). Điều này hiển nhiên đúng do

\(f\left(t\right)=t^2-3t=t\left(t-3\right)\ge t\left(3-3\right)=0\) với mọi t > 3

Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1 hay x = y = z

P/s: Sai thì chịu

Phạm Kim Oanh
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 10:18

Áp dụng BĐT cosi cho 3 số x;y;z dương

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2\sqrt{\dfrac{x^2y^2}{y^2z^2}}=\dfrac{2x}{z}\\ \dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{y^2z^2}{x^2z^2}}=\dfrac{2y}{z}\\ \dfrac{x^2}{y^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2}{x^2y^2}}=\dfrac{2z}{y}\)

Cộng vế theo vế 

\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\)

\(\LeftrightarrowĐpcm\)

Phạm Kim Oanh
8 tháng 10 2021 lúc 20:36

Thầy Ngô Văn Thái undefined

Trang candy
Xem chi tiết
Phạm Thế Mạnh
22 tháng 1 2016 lúc 22:17

\(\Leftrightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\)
\(\Leftrightarrow\frac{x\left(x+y\right)-xy}{x+y}+\frac{y\left(y+z\right)-yz}{y+z}+\frac{z\left(z+x\right)-xz}{z+x}\ge\frac{x+y+z}{2}\)
\(\Leftrightarrow x+y+z-\frac{xy}{x+y}-\frac{yz}{y+z}-\frac{xz}{z+x}\ge\frac{x+y+z}{2}\)
\(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{zx}{z+x}\le\frac{x+y+z}{2}\)
\(x+y\ge2\sqrt{xy}\Rightarrow\frac{xy}{x+y}\le\frac{xy}{2\sqrt{xy}}=\frac{\sqrt{xy}}{2}\le\frac{x+y}{4}\)
tương tự rồi cộng vế với vế suy ra đpcm


 

Triet Nguyen Duy
Xem chi tiết
Kiệt Nguyễn
9 tháng 3 2020 lúc 10:43

Áp dụng Bunhiacopxki dạng phân thức:

\(VT=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\ge\frac{\left(\sqrt{2}.3\right)^2}{2\left(x+y+z\right)}=\frac{9}{x+y+z}\)

Dấu "=" khi x = y = z > 0

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
6 tháng 4 2021 lúc 13:09

cũng là Cauchy-Schwarz dạng Engel nhưng làm khác idol :))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{\left(1+1+1\right)^2}{x+y+y+z+z+x}=\frac{9}{2\left(x+y+z\right)}\)

=> \(2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{9}{2\left(x+y+z\right)}\cdot2=\frac{9}{x+y+z}\left(đpcm\right)\)

Đẳng thức xảy ra <=> x=y=z

Khách vãng lai đã xóa
kobikdau
Xem chi tiết
Nguyễn An
Xem chi tiết
Bánh Bao Nhân Thịt
Xem chi tiết
Nguyễn kim ngân
Xem chi tiết
๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết