Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Linh
Xem chi tiết
Hà Nam Phan Đình
18 tháng 12 2017 lúc 21:06

\(\sqrt{3\left(x^2+2x+1\right)+9}\ge3\) (1)

\(\sqrt{5\left(x^4-2x^2+1\right)+4}\ge2\) (2)

\(\Rightarrow\left(1\right)+\left(2\right)\ge5\)

Trương Phúc Uyên Phương
Xem chi tiết
s2 Lắc Lư  s2
26 tháng 3 2016 lúc 21:43

tách trong căn thành hđt thôi

căn thứ 1 >=3

căn thứ 2 >=2 

=> đpcm

Kẻ Huỷ Diệt
26 tháng 3 2016 lúc 21:49

\(\sqrt{3\left(x^2+2x+4\right)}+\sqrt{5x^2\left(x^2-2\right)+9}\)

=\(\sqrt{3\left(x^2+2x+1+3\right)}+\sqrt{5x^2\left(x^2-2\right)+9}\)

\(\sqrt{3\left[\left(x+1\right)^2+3\right]}+\sqrt{5x^2\left(x^2-2\right)+9}\)

=\(3\left(x+1\right)+\sqrt{5}.x.x.\left(-\sqrt{2}\right)+3\)

=\(3\left(x+1\right)-\sqrt{10}.x^2+3\)

P/s: Mình mới học lớp 8 nên chỉ có thể khai triển như thế thôi, phần chứng minh bạn làm tiếp nhé.

s2 Lắc Lư  s2
26 tháng 3 2016 lúc 21:52

@@ nó lm linh tinh mà 2 đúng

Megpoid gumi gumiya
Xem chi tiết
Học tập là số 1
29 tháng 8 2017 lúc 21:58

hẽhe kĩckDễ z sao đăg hả bn

alibaba nguyễn
30 tháng 8 2017 lúc 9:27

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)

\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)

nguyễn thị thảo vân
Xem chi tiết
Nguyễn Nhật Minh
6 tháng 2 2016 lúc 21:24

2) năm mới chúc nhau niềm vui ( cho bài dễ thôi )

Vt >/ 3 + 2 = 5

 VP </ 5 

dấu = xảy ra  khi x =-1

Minh Triều
6 tháng 2 2016 lúc 20:50

Dùng Hằng Đẳng Thức thôi bạn ạ

nguyễn thị thảo vân
6 tháng 2 2016 lúc 20:52

Minh Triều bạn làm giúp mk đi, mk ko làm đc

Hày Cưi
Xem chi tiết
Lê Anh Duy
9 tháng 3 2019 lúc 12:27

\(\sqrt{3x^2+6x+12}+\sqrt{5x^2-10x^2+9}=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+4}\)

\(\ge\sqrt{9}+\sqrt{4}=3+2=5\)

Miền Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 21:08

Ta có:

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)

\(3-4x-2x^2=5-2\left(x+1\right)^2\le5\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}3\left(x+1\right)^2=0\\5\left(x^2-1\right)^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

Trang-g Seola-a
Xem chi tiết
Nguyễn Linh Chi
8 tháng 11 2018 lúc 9:02

<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)

mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\)\(\sqrt{5\left(x^2-1\right)^2+4}\ge4\)\(2\left(x+1\right)^2\ge0\)với mọi x 

=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)

'=" xảy ra<=> x+1=0<=> x=-1

phuongthanh
Xem chi tiết
2012 SANG
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 15:32

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)