cho tam giác ABC vuông tại A. Biết cos B=0,8. Hãy tính các tỉ số lượng giác của góc C
Cho tam giác ABC vuông tại A. Biết \(\cos B=0,8\), hãy tính các tỉ số lượng giác của góc C
Gợi ý : Sử dụng bài tập 14
Vì hai góc B và C phụ nhau nên sinC=cosB=0,8.
Ta có:
Nhận xét: Nếu biết sinα (hay cosα) thì ta có thể tính được ba tỷ số lượng giác còn lại.
Hướng dẫn giải:
Vì hai góc B và C phụ nhau nên sinC=cosB=0,8.
Ta có: Sin2C+cos2C=1⇒cos2C=1−sin2C=1−(0,8)2=0,36
⇒cosC=0,6;tgC=sinCcosC=0,80,6=43;cotgC=cosCsinC=0,60,8=34
Nhận xét: Nếu biết sinα (hay cosα) thì ta có thể tính được ba tỷ số lượng giác còn lại.
Cho tam giác ABC vuông tại A. Biết cosB = 0,8 , hãy tính các tỉ số lượng giác của góc C
Vì tam giác ABC vuông nên ta có:
\(\text{cosB=sinC=0,8}\)
\(\text{cosC=}\)\(\sqrt{1-sin^2C}\) (theo công thức trong SGK ^^)=\(\sqrt{1-0,8^2}=0,6\)
\(tangC=\dfrac{sinC}{cosC}=\dfrac{0,8}{0,6}=\dfrac{4}{3}\left(\approx1,3\right)\)
\(cotangC=\dfrac{cosC}{sinC}=\dfrac{0,6}{0,8}=0,75\)
Cho tam giác ABC vuông tại A. Biết cosB = 0,8, hãy tính các tỉ số lượng giác của góc C.
Gợi ý: Sử dụng bài tập 14.
Ta có: ∠B + ∠C = 90o nên sinC = cosB = 0,8
Từ công thức sin2C + cos2C = 1 ta suy ra:
Cho tam giác ABC vuông tại A. Biết cosB = 0,8, hãy tính các tỉ số lượng giác của góc C.
Gợi ý: Sử dụng bài tập 14.
Ta có: ∠B + ∠C = 90o nên sinC = cosB = 0,8
Từ công thức sin2C + cos2C = 1 ta suy ra:
Cho tam giác ABC vuông tại C, có AC = 0,8 cm, BC = 0,9 cm. Hãy tính tỉ số lượng giác góc B, rồi suy ra tỉ số lượng giác của góc A
Câu1: hãy tính các tỉ số lượng giác còn lại của góc a, biết:
a) sin a =0,8, b) cos a =5/13 , c) tga =4/5 , d) cotga =3
Câu 2: Cho tam giác ABC vuông tại A. Tìm các tỉ số lượng giác cảu góc B khi:
a) BC = 5cm, AB = 3cm
b) BC = 13cm, AC = 12cm
c) AC = 4cm, AB = 3cm
Câu 3: Cho tam giác ABC. Biết AB = 40cm, AC = 58 cm và BC =42cm.
a) Tam giác ABC là tam giác gì ? vì sao ?
b) Kẻ đường cao BH cảu tam giác ABC. Tính độ dài đoạn thẳng BH.
c) Tính tỉ số lượng giác cảu góc A. Từ đó, suy ra tỉ số lượng giác của góc C.
Câu 4: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 7cm và EF = 25cm.
a) Tính độ dài của các đoạn thẳng DF,DH,EH và HF.
b) Tính tỉ số lượng giác của góc F.
Cho tam giác ABC vuông tại A , BC =10cm , cosB =0,8.
a) Tính các cạnh AB, AC
b) Tính các tỉ số lượng giác của góc C
Ta có:
\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB=10.0,8=8\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}=6\left(cm\right)\)
b.
\(sinC=\dfrac{AB}{BC}=\dfrac{8}{10}=0,8\)
\(cosC=\dfrac{AC}{BC}=\dfrac{6}{10}=0,6\)
\(tanC=\dfrac{AB}{AC}=\dfrac{8}{6}=\dfrac{4}{3}\)
\(cotC=\dfrac{AC}{AB}=\dfrac{3}{4}\)
sin,cos,tan..nhé
cho tam giac abc vuông tại a . biết cosb=0,tám
hãy tính các tỉ số lượng giác của góc c
cosB=0,8=4/5 => BA=4 , BC=5
Áp dụng định lý Pytago trong tam giác vuông ABC, có:
AC2=BC2-BA2
(=) AC2=52-42=9
(=) AC=3
Ta có:
sinC=BA/BC=4/5
cosC=AC/BC=3/5
tanC=BA/AC=4/3
cotC=AC/BA=3/4
\(sin^2B+cos^2B=1\Leftrightarrow sin^2B-1-\left(0,8\right)^2=0.36.\Leftrightarrow sinB=0,6.\\\)
\(tanB=\frac{sinB}{cosB}=\frac{0,6}{0,8}=\frac{3}{4}\)
\(cotB=\frac{1}{tanB}=\frac{1}{\frac{3}{4}}=\frac{4}{3}.\)
\(sinC=cosB=0,8\)
\(cosC=sinB=0,6\)
\(tanC=cotB=\frac{4}{3}\)
\(cotC=tanB=\frac{3}{4}.\)
Bài 1: Cho tam giác ABC vuông tại A
a. Hãy viết các tỉ số lượng giác của góc C
b. Biết AB= 5cm, AC=12cm. Hãy tính các tỉ số lượng giác của góc B
c. Tính B,C (làm tròn đến phút)
\(a,\sin\widehat{C}=\dfrac{AB}{BC};\cos\widehat{C}=\dfrac{AC}{BC};\tan\widehat{C}=\dfrac{AB}{AC};\cot\widehat{C}=\dfrac{AC}{AB}\\ b,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13};\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{5}{13}\\ \tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5};\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{5}{12}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5}\approx\tan67^022'\\ \Rightarrow\widehat{B}\approx67^022'\\ \Rightarrow\widehat{C}=90^0-67^022'=22^038'\)