cho x,y,z tm \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\)
CMR xyz=\(\frac{1}{8}\)
Cho 3 số thực x,y,z tm xyz=1 CMR
\(\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+z^3+x^3}\)
Áp dụng công thức : \(x^3+y^3\ge x^2y+xy^2\) ( tự c/m bổ đề này nhé !! )
Ta có : \(\dfrac{1}{1+x^3+y^3}\le\dfrac{xyz}{xyz+x^2y+xy^2}=\dfrac{xyz}{xy\left(z+x+y\right)}=\dfrac{z}{x+y+z}\)(1)
C/m tương tự ta được :\(\dfrac{1}{1+y^3+z^3}\le\dfrac{x}{x+y+z}\)(2)
\(\dfrac{1}{1+z^3+x^3}\le\dfrac{y}{x+y+z}\)(3)
Cộng từng vế của (1) (2)(3) => ĐPCM.
cho x,y,z là các số thực dương tm đk xyz=8
cmr \(\frac{1}{2x+y+6}\) \(+\frac{1}{2y+z+6}+\frac{1}{2z+x+6}\le\frac{1}{4}\)
Đặt \(x=2a;y=2b;z=2c\)
Thì ta có: \(\sqrt{abc}=1\)
Ta có: \(\frac{1}{\sqrt{a}+\sqrt{ab}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ca}+1}=1\)
Ta cần chứng minh:
\(\frac{1}{2}\left(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\right)\le\frac{1}{4}\)
Ta có:
\(VT\le\frac{1}{2}\left(\frac{1}{2\sqrt{a}+2\sqrt{ab}+2}+\frac{1}{2\sqrt{b}+2\sqrt{bc}+2}+\frac{1}{2\sqrt{c}+2\sqrt{ca}+2}\right)\)
\(=\frac{1}{4}\)
alibaba nguyễn: tớ có 1 khúc mắc là vì sao lại có thể đưa ra dòng thứ 3 (từ trên xuống dưới)
thật vậy ta có \(\frac{1}{\sqrt{a}+\sqrt{ab}+1}\) \(+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{a}+\sqrt{ac}+1}\)
=\(\frac{\sqrt{abc}}{\sqrt{a}+\sqrt{ab}+\sqrt{abc}}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{\sqrt{b}}{\sqrt{bc}+\sqrt{abc}+\sqrt{b}}\)
=\(\frac{\sqrt{bc}}{1+\sqrt{b}+\sqrt{bc}}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{\sqrt{b}}{\sqrt{bc}+1+\sqrt{b}}=\frac{\sqrt{bc}+\sqrt{b}+1}{\sqrt{bc}+\sqrt{b}+1}=1\)
Need some helps!
1. Cho x, y, z > 0 tm \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) CMR:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
2. Cho a, b, c > 0 tm a + b + c = 1. Tìm GTNN của bt sau
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
1) Cho x,y,z dương thỏa mãn xyz=8 CMR
\(\frac{^{x^2}}{x^2+2x+4}\)+\(\frac{y^2}{y^2+2y+4}\)+\(\frac{z^2}{z^2+2z+4}\)>= 1
2) cho x,y,z>0 và xyz=1 CMR
(x+\(\frac{1}{y}\)-1) (y+\(\frac{1}{z}\)-1) (z+\(\frac{1}{x}\)-1)<=1
ko lam thi thoi chui cl ay!!!
đù , chuyện giề đang xảy ra vậy man
bọn bay ngáo quá rùi hút cần à chửi tục hơn thánh mé chửi nữa cho phai nick hét bây giờ ,ko tao số má lun
Cho x;y;z nguyên dương thỏa mãn :x+y+z=xyz
CMR:
\(\frac{1+\sqrt{x^2+1}}{x}+\frac{1+\sqrt{y^2+1}}{y}+\frac{1+\sqrt{z^2+1}}{z}< =xyz\)
từ \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\)\(\Rightarrow ab+bc+ca=1\)
Thay vào \(\sqrt{x^2+1}\) r` phân tích nhân tử áp dụng C-S là ra :3
Cho x,y,z là số thực dương t/m x+y+z=xyz
CMR \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)
Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))
làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)
vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)
[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)
dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)
Cho x, y, z > 0. Cmr: \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z+6\)
Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:
A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)
\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)
Dấu "=" xảy ra khi x = y = z = 1
cho x,y,z>0 và xyz=1. Cmr: \(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\ge\frac{3}{2}\)
Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.
Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)
Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)
\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)
\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))
Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.
Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.
A hay là cách này ấy nhỉ? Cách này thì chắc ăn hơn cách kia.(chỗ chứng minh f(t) >=0 với t>=3)
Cần chứng minh \(f\left(t\right)=2t^2-3t-9\ge0\)
\(\Leftrightarrow2t^2-6t+3t-9\ge0\) (Tách -3t thành -6t + 3t)
\(\Leftrightarrow2t\left(t-3\right)+3\left(t-3\right)=\left(2t+3\right)\left(t-3\right)\ge0\) (luôn đúng với mọi \(t\ge3\))
Do đó f(t) \(\ge0\). Hay ta có đpcm.
Cho x, y, z > 0. CMR :
\(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\ge x+y+z+6\)