Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyên công quyên
Xem chi tiết
ST
9 tháng 1 2019 lúc 17:06

a, ĐKXĐ: \(x\ne0;x\ne\pm1\)

\(P=\left(\frac{2x}{x^2-1}+\frac{x-1}{2x+2}\right):\frac{x+1}{2x}=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)

\(=\left(\frac{2x.2}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{2x}\)

\(=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}:\frac{x+1}{2x}=\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{2x}{x+1}=\frac{x}{x-1}\)

b,Để \(P=2\Leftrightarrow\frac{x}{x-1}=2\Leftrightarrow2\left(x-1\right)=x\Leftrightarrow2x-2-x=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tmđk\right)\)

Vậy để P=2 <=> x=2

Trần Tấn Đại
Xem chi tiết
K.Hòa-T.Hương-V.Hùng
Xem chi tiết
hà linh
Xem chi tiết
Riio Riyuko
18 tháng 5 2018 lúc 15:10

Bài 1 : Điều kiện xác định : \(x\ne\pm1\)

\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)

\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)

Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm

mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K 

Vnh11
Xem chi tiết
Du Xin Lỗi
30 tháng 12 2022 lúc 20:25

\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}\)

a)

Để giá trị của biểu thức P được xác định, thì :

 \(\left[{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne-2\\x\ne-2;2\end{matrix}\right.\)

Vậy ĐKXĐ của biểu thức P là : \(x\ne\left\{2;-2\right\}\)

b)

\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}=\left(\dfrac{x}{x-2}-\dfrac{x-2}{x+2}\right):\dfrac{1}{x^2-4}=\left(\dfrac{x\left(x+2\right)-\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\dfrac{x^2-4}{1}\)

\(=\dfrac{x^2+2x-x^2+2x-4}{x^2-4}.\dfrac{x^2-4}{1}=\dfrac{4x-4}{x^2-4}.\dfrac{x^2-4}{1}=4x-4\)

c)

Để : 

\(P=0\Rightarrow4x-4=0\)

\(\Rightarrow4\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Vậy.....

 

Linh Miêu
Xem chi tiết
Trí Tiên亗
19 tháng 2 2020 lúc 10:31

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

Khách vãng lai đã xóa
Trang Đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 9:15

a: ĐKXĐ: x>=0; x<>1

\(P=\dfrac{-3+\sqrt{x}-1}{x-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}-4}{\sqrt{x}-1}\)

b: Để P=5/4 thì \(\dfrac{\sqrt{x}-4}{\sqrt{x}-1}=\dfrac{5}{4}\)

=>\(5\sqrt{x}-5=4\sqrt{x}-16\)

=>căn x=-11(loại)

Nguyễn Nhất Linh
Xem chi tiết
ngonhuminh
1 tháng 1 2017 lúc 19:46

Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy

Bài 4:

\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

a) DK x khác +-1

b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)

c) x+1  phải thuộc Ước của 2=> x=(-3,-2,0))

Đỗ Lê Mỹ Hạnh
1 tháng 1 2017 lúc 20:00

1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)

                                      \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

                                       \(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

   Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa

b)  \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)

 \(=\frac{x-2}{x+2}\)       

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)             

\(\Leftrightarrow x-2=\left(x+2\right).0\)          

\(\Leftrightarrow x-2=0\)   

\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )

=> ko có gía trị nào của x để A=0

Cold Wind
1 tháng 1 2017 lúc 20:06

Bài 1: 

a) \(x+2\ne0\Leftrightarrow x\ne-2\)

\(x^2-4\ne0\Leftrightarrow x\ne+_-2\)

b) \(A=\frac{x}{x+2}+\frac{4-2x}{x^2-4}=\frac{x-2}{x+2}\)

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Mà đk: x khác 2 

Vậy ko tồn tại giá trị nào của x để A=0

LanAnh
Xem chi tiết
YangSu
28 tháng 6 2023 lúc 12:02

Xem lại biểu thức P.

Bui Tien Hai Dang
28 tháng 6 2023 lúc 12:17

loading...

Mình phải đi ăn nên chiều mình làm nốt câu d nhé

HT.Phong (9A5)
28 tháng 6 2023 lúc 12:22

a) Điều kiện để P được xác định là: \(x\ne1;x\ne-1\)

b) \(P=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}x-\dfrac{x^2-1}{x^2+2x+1}\)

\(P=\left(\dfrac{\left(x+1\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\right):\dfrac{2x}{5x-5}x-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}\)

\(P=0:\dfrac{2x}{5x-5}x-\dfrac{x-1}{x+1}\)

\(P=-\dfrac{x-1}{x+1}\)

c) Theo đề ta có:

\(P=2\)

\(\Leftrightarrow-\dfrac{x-1}{x+1}=2\)

\(\Leftrightarrow-\left(x-1\right)=2x+2\)

\(\Leftrightarrow-x-2x=2-1\)

\(\Leftrightarrow-3x=1\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

d) \(P=-\dfrac{x-1}{x+1}\) nguyên khi:

\(\Leftrightarrow x-1⋮-\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)-2⋮-\left(x+1\right)\)

\(\Leftrightarrow-2⋮-\left(x+1\right)\)

\(\Leftrightarrow2⋮x+1\)

\(\Rightarrow x+1\inƯ\left(2\right)\)

Vậy \(P\) nguyên khi \(x\in\left\{-2;0;-3;1\right\}\)

Fiona West
Xem chi tiết
Nguyễn Thái Thịnh
5 tháng 2 2022 lúc 18:25

Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)

Fiona West
5 tháng 2 2022 lúc 18:25

\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)

viết lại biểu thức 

Nguyễn Thái Thịnh
5 tháng 2 2022 lúc 20:11

a) \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}=\dfrac{\left(x-1-2\right)\left(x-1+2\right)}{\left(2x+1-x-2\right)\left(2x+1+x+2\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{3\left(x-1\right)\left(x+1\right)}\)  (1)

\(\Rightarrow\) ĐKXĐ: \(x\ne\pm1\)

b) \(\left(1\right)=\dfrac{x-3}{3x-3}\) (2)

c) Thay \(x=-3;x=1\) vào (2) ta có: \(\left\{{}\begin{matrix}B=\dfrac{-3-3}{3.\left(-3\right)-3}=\dfrac{1}{2}\\B=\dfrac{1-3}{3.1-3}=0\end{matrix}\right.\)

d) \(B=5\Rightarrow\dfrac{x-3}{3x-3}=5\Leftrightarrow x-3=15x-15\Leftrightarrow x=\dfrac{6}{7}\)