cho hàm số fn) thỏa
\(\hept{\begin{cases}f\left(1\right)=f\left(2\right)=1;f\left(3\right)=2\\f\left(n+1\right)=\frac{f\left(n\right)+f\left(n-1\right)}{F\left(n-2\right)}\end{cases}}\)tính f(20) và f(25), lập quy trình bấm phím liên tục
Cho hàm số y=f(x) xác định và liên tục trên R thõa mãn các điều kiện sau:
\(\hept{\begin{cases}f\left(x\right)>0,\forall x\in R\\f'\left(x\right)=-e^xf^2\left(x\right),\forall x\in R\\f\left(o\right)=\frac{1}{2}\end{cases}}\)
Hãy tính \(f\left(ln2\right)\).
Cho 2 đa thức \(f\left(x\right)\)và \(g\left(x\right)\)có hệ số nguyên thỏa mãn \(f\left(x^3\right)+g\left(x^3\right)⋮x^2-x+1\)
Chứng minh: \(\hept{\begin{cases}f\left(x\right)\\g\left(x\right)\end{cases}⋮}x+1\)
Cho hàm số \(f\left(x\right)=\hept{\begin{cases}-2x+7,x< 5\\x+9,x\ge5\end{cases}}\)Khi đó \(f\left(3\right)=\)
Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện
1. \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)
2. \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)
3. \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)
4. \(\hept{\begin{cases}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{cases}},\forall x,y\in R\)
@Lê Minh Đức
@alibaba nguyễn : Giúp với ông ei :) Chắc ông cũng học đến cái này r :))
Cho hàm số f được xác định bởi công thức sau:
f(x) = \(\hept{\begin{cases}x+1vớix\ge0\\1-2xvớix< 0\end{cases}}\)
a, Tính f(2); f(-2) ; f(0) ; f\(\left(\frac{1}{2}\right)\)
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}2\sin^2x+1,x< 0\\2^x;x\ge0\end{matrix}\right.\). Giả sử \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\) trên \(R\) và thỏa mãn điều kiện \(F\left(1\right)=\dfrac{2}{ln2}\). Tính \(F\left(-\pi\right)\)
A. \(F\left(-\pi\right)=-2\pi+\dfrac{1}{ln2}\) B. \(F\left(-\pi\right)=-2\pi-\dfrac{1}{ln2}\)
C. \(F\left(-\pi\right)=-\pi-\dfrac{1}{ln2}\) D. \(F\left(-\pi\right)=-2\pi\)
Mình cần bài giải ạ, mình cảm ơn nhiều ♥
AE cho mình hỏi với :
Cho hàm số \(f\left(x\right)=\hept{\begin{cases}sinx,cosx\ge0\\1+cosx,cosx< 0\end{cases}}\). Hỏi hàm số f có tất cả bao nhiêu điểm gián đoạn trên khoảng (0;2018)
cho các số thực x,y,z thỏa mãn\(\hept{\begin{cases}x+y+z=6\\\left(x-1\right)^3+\left(y-2\right)^3+\left(z-3\right)^3=0\end{cases}}\)
Tính giá trị biểu thức của F=(x-1)2013+(y-2)2013+(z-3)2013
Cho hàm số \(f\left(x\right)\) xác định trên tập số nguyên và nhận giá trị cũng trong tập số nguyên, thỏa mãn \(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(m+n\right)=f\left(m\right)+f\left(n\right)+3\left(4mn-1\right)\end{matrix}\right.\) với mọi m, n là số nguyên. Tính \(f\left(20\right)\)
\(f\left(20\right)=f\left(1\right)+f\left(19\right)+3\left(4.1.19-1\right)=f\left(19\right)+12.19-3\)
\(f\left(19\right)=f\left(18\right)+12.18-3\)
\(f\left(18\right)=f\left(17\right)+12.17-3\)
.....
\(f\left(3\right)=f\left(2\right)+12.2-3\)
\(f\left(2\right)=f\left(1\right)+12-3\)
Cộng vế theo vế các đẳng thức trên:
\(f\left(2\right)+f\left(3\right)+...+f\left(20\right)=f\left(1\right)+f\left(2\right)+...+f\left(19\right)+12\left(1+2+...+19\right)-3.20\)
\(\Leftrightarrow f\left(20\right)=2220\)
Đoạn này bạn tính kĩ một chút nha, mình tính không biết có sai không.