cho tam giac ABC vuong tai A co AB=3cm,AC=4cm,duong cao AH
a, tinh BC,AH
b, tinh goc B, goc C
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)
Cho tam giac ABC vuong tai A (AB<AC) ve duong cao AH (H thuoc BC)
A)cm tam giac ABH~tam giac CBA suy ra AB binh =BH.BC
B)cho AB=6cm, AC=8cm . Tinh BC.Tren canh BC lay diem E sao cho CE=4cm, cm BE binh=BH.HC
C) tinh dien tich tam giac ABH
D) Duong phan giac cua goc AHB cat AB tai D, duong phan giac cua goc AHC cat AC tai F, duong thang DF cat AH tai I va cat CB tai K.cm DI.FK=DK.FI
Cho tam giac ABC vuong tai A ( AB<AC) ve duong cao AH (H thuoc BC)
A) cm tam giac ABH dong dang tam giac CBA suy ra AB binh =BH.BC
B) Cho AB =6cm , AC=8cm. Tinh BC .Tren canh BC lay diem E sao cho CE=4cm, cm BE binh =BH.HC
C) Tinh dien tich tam giac ABH
D) Duong phan giac cua goc AHB cat AB tai D duong phan giac cua goc AHC cat AC tai F duong thanh DF cat AH tai I va cat CB tai K. Cm DI .FK=DK.FI
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
Cau 1: Cho tam giac ABC cuong tai A, AB=8cm; AC=15cm. Ve duong cao AH
a) chung minh AB^2= BH. BC
b) Tinh BH, CH, AH, BC
c) Ve phan giac AD cua tam giac ABC. Chung minh H nam giua B va D
d) Tinh ti so dien tich D HAC va D A.BC
Cau 2: Cho tam giac ABC vuong tai A, AB=5cm; Ac=12cm, ve duong cao AH va duong phan giac AD.
a) Tinh BC, BD
b) Chung minh D ACH: D ABC; tinh AH
c) Qua B ke duong thang vuong goc voi AB cat tia AD tai K. Chung minh AB.AD =AC. KD
.Cau 3: Cho tam giac ABC vuong A co AB = 5cm; AC=12cm. Ve dcao AH va pgiac AD cua goc BAC
a) Tih BC; BD
b) Chung minh D HAC : D ABC
c) Qua B ke duong vgoc voi BA cat AD tai k. Chung minh AB.AD= AC.KD
CHO TAM GIAC ABC CAN TAI A, CO AB=AC=5CM, BC=8CM. KE AH VUONG GOC BC(H THUOC BC)CHUNG MINH
A) HB=HC VA GOC BAH=GOC CAH
B) TINH AH
C) GOI D VA E LA CHAN DUONG VUONG GOC KE TU H DEN AB VA AC CHUNG MINH TAM GIAC HDE CAN
cho tam giac ABC vuong tai A,AH la duong cao,biet BH=4cm,CH=2cm.
a)tinh AB,AC
b) ve HDvuong goc AB tai D,HE vuong goc voi AC tai E.Chung minh BD=BCcos^3B
c)CM:DE^3=BD.CE.BC
cho tam giac abc vuong tai a, duong cao ah. ve hn vuong goc voi ac, hm vuong goc voi ab. chung minh:
a, am.ab=an.ac
b, cho ah= 2cm , bc= 5cm. tinh dien tich amhn
a: Xét ΔAHB vuông tại H có HM là đừog cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đừog cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b: \(S_{ABC}=\dfrac{2\cdot5}{2}=5\left(cm^2\right)\)
Xét ΔAMN và ΔACB có
AM/AC=AN/AB
góc A chung
DO đó; ΔAMN đồg dạng với ΔACB
Suy ra: \(\dfrac{S_{AMN}}{S_{ACB}}=\left(\dfrac{MN}{CB}\right)^2=\dfrac{4}{25}\)
\(\Leftrightarrow S_{AMN}=\dfrac{4}{25}\cdot5=\dfrac{4}{5}\left(cm^2\right)\)
\(\Leftrightarrow S_{AMHN}=2\cdot S_{AMN}=\dfrac{8}{5}\left(cm^2\right)\)
Cho tam giac ABC vuong tai A(AC>AB). Duong cao AH. Goi D la diem thuoc ti HC so cho HD=HA. Duong vuong goc Bc ti D cat AC tai E.
a. Chm tam giac AEB vuong can
b. Goi M la trung diem cua BE. Tinh so do goc AHM
c. Goi I la trung diem cua AH, duong vuong goc voi BC tai C cat BI tai K. Chm KA=KC