Tìm dư khi chia đa thức f(x) = \(x^{50}+x^{49}+...+x^2+x+1\) cho x + 1
Cho đa thức \(f\left(x\right)=x^{50}+x^{49}+x^{48}+...+x^2+x+1\) . tìm dư của phép chia đa thức f(x) cho đa thức \(x^2-1\)
1) Chứng minh rằng đa thức (x+y)6+(x-y)6 chia hết cho đa thức x2+y2
2) Tìm dư của phép chia đa thức f(x) cho x2-1 với: f(x)=x50x+49+x48+...+x2+x+1
1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)
\(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2
2) gọi dư của phép chia là ax+b
ta có f(1) = a+b =51
f(-1) = -a+b =1
=> b =26 ; a =25
Vậy dư là : 25x + 26
Cho đa thức f(x ) bậc 3, đa thức f(x) chia x-1 dư 2011, chia x-2 dư 2012
Tìm dư khi chia f(x) cho (x-1)(x-2)
đa thức f(x) ki chia cho x+1 dư 4 chia cho x^2+1 dư 2x+1. tìm phần dư khi chia đa thức f(x) cho (x+1)(x^2+1)
Biết rằng đa thức f(x) chia cho đa thức g(x) = x - 2 được dư là 21, chia cho đa thức h(x) = x ^ 2 + 2 được đa thức dư là 2x−1. Tìm đa thức dư khi chia đa thức f(x) cho đa thức h(x).g(x)
Đặt \(A\left(x\right)=h\left(x\right)\cdot g\left(x\right)\)
\(=\left(x-2\right)\left(x^2+2\right)\)
\(=x^3+2x-2x^2-4=x^3-2x^2+2x-4\)
=>A(x) có bậc là 3
=>Đa thức dư khi F(x) chia cho A(x) sẽ có bậc tối đa là 2
Gọi đa thức dư đó có dạng là \(B\left(x\right)=ax^2+bx+c\) , gọi đa thức thương có dạng là \(Q\left(x\right)\)
Do đó, ta có: \(f\left(x\right)=Q\left(x\right)\left(x-2\right)\left(x^2+2\right)+ax^2+bx+c\)
f(x) chia x-2 dư 21
=>f(2)=21
Thay x=2 vào \(f\left(x\right)=Q\left(x\right)\left(x-2\right)\left(x^2+2\right)+ax^2+bx+c\) , ta được:
\(f\left(2\right)=q\left(2\right)\left(2-2\right)\left(x^2+2\right)+a\cdot2^2+b\cdot2+c\)
=>4a+2b+c=21
\(f\left(x\right)=Q\left(x\right)\left(x-2\right)\left(x^2+2\right)+ax^2+bx+c\)
\(=Q\left(x\right)\left(x-2\right)\left(x^2+2\right)+ax^2+2a+bx+c-2a\)
\(=\left(x^2+2\right)\left\lbrack Q\left(x\right)\left(x-2\right)+a\right\rbrack+bx+c-2a\)
f(x) chia \(x^2+2\) dư 2x-1 nên bx+c-2a=2x-1
=>b=2 và c-2a=-1
4a+2b+c=21
=>4a+4+c=21
=>4a+c=17
mà c-2a=-1
nên 4a+c-c+2a=17+1
=>6a=18
=>a=3
c-2a=-1
=>2a=c+1
=>c+1=6
=>c=5
Vậy: Đa thức dư là \(B\left(x\right)=3x^2+2x+5\)
f(x) chia \(x^2+2\) dư 2x-1
Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
Gọi P(x),R(x) lần lượt là thương và dư khi chia f(x) cho \(\left(x+1\right)\left(x^2+1\right)\)
=>\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)\cdot P\left(x\right)+R\left(x\right)\)
Khi chia f(x) cho \(\left(x+1\right)\left(x^2+1\right)\) sẽ được dư là một đa thức bậc hai
=>Dư là \(R\left(x\right)=a\cdot x^2+bx+c\)
=>\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)\cdot P\left(x\right)+a\cdot x^2+bx+c\)
f(x) chia x+1 dư 4 nên f(-1)=4
Thay x=-1 vào f(x), ta được:
\(f\left(-1\right)=\left(-1+1\right)\left\lbrack\left(-1\right)^2+1\right\rbrack\cdot P\left(x\right)+a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c\)
=>a-b+c=4
Ta có: \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)\cdot P\left(x\right)+a\cdot x^2+bx+c\)
\(=\left(x+1\right)\left(x^2+1\right)\cdot P\left(x\right)+a\cdot x^2+a+bx+c-a\)
\(=\left(x^2+1\right)\left\lbrack\left(x+1\right)\cdot P\left(x\right)+a\right\rbrack+bx+c-a\)
f(x) chia \(x^2+1\) dư 2x+3 nên bx+c-a=2x+3
=>b=2; c-a=3
a-b+c=4
=>a+c=4+b=4+2=6
mà c-a=3
nên \(c=\frac{3+6}{2}=4,5;a=4,5-3=1,5\)
Vậy: Đa thức dư là \(R\left(x\right)=1,5x^2+2x+4,5\)
Tìm dư khi chia đa thức F(x) = x50 + x49 + ... + x2 + x + 1 cho x2 - 1
Giúp mình nhé
Dúng phương pháp xét giá trị riêng
Gọi dư là \(ax+b\)
Ta có: \(F\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b\)
Do đẳng thức đúng với mọi x nên lần lượt thử \(x=1;x=-1\)
Với x = 1 thay vào đc:
\(51=a+b\) (1)
Với x = -1 thay vào đc:
\(1=-a+b\) (2)
(1) và (2) suy ra x = 25; y = 26
Vậy dư là 25x+26
Vì đa thức chia là đa thức bậc 2 nên đa thức dư sẽ là bậc 1
Gọi thương là \(Q\left(x\right)\)
Gọi số dư là \(R\left(x\right)=ax+b\)
\(\Rightarrow F\left(x\right)=Q\left(x\right).\left(x^2-1\right)+ax+b\)
Xét nghiệm của đa thức chia
\(x^2-1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Nên ta có hệ phương trình .
\(\left\{{}\begin{matrix}P\left(1\right)=a+b=51\\P\left(-1\right)=-a+b=1\end{matrix}\right.\)
Giải hệ ra ta được :
\(\left\{{}\begin{matrix}a=25\\b=26\end{matrix}\right.\)
Vậy đa thức dư là \(25x+26\)
Đa thức f(x) khi chia cho x+1 thì dư 4, khi chia cho x^2 + 1 thì dư 2x+3. Tìm dư khi chia f(x) cho (x+1)(x^2 + 1)
Áp dụng định lý Bezout ta được:
\(f\left(x\right)\)chia cho x+1 dư 4 \(\Rightarrow f\left(-1\right)=4\)
Vì bậc của đa thức chia là 3 nên \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)q\left(x\right)+ax^2+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+\left(ax^2+a\right)-a+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left[\left(x+1\right)q\left(x\right)+a\right]+bx+c-a\)
Vì \(f\left(-1\right)=4\)nên \(a-b+c=4\left(1\right)\)
Vì f(x) chia cho \(x^2+1\)dư 2x+3 nên
\(\hept{\begin{cases}b=2\\c-a=3\end{cases}\left(2\right)}\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a+c=6\\b=2\\c-a=3\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{9}{2}\end{cases}}}\)
Vậy dư f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là \(\frac{3}{2}x^2+2x+\frac{1}{2}\)
Đa thức f(x) chia cho x+1 dư 4 , chia cho x\(^2\)+1 dư 2x+3 . TÌm phần dư khi chia f(x) cho (x+1)(x\(^2\)+1)
Lời giải:
Đặt $f(x)=Q(x)(x+1)(x^2+1)+ax^2+bx+c$ trong đó $ax^2+bx+c$ là đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$
Ta có:
$f(x)=Q(x)(x+1)(x^2+1)+a(x^2-1)+b(x+1)+a-b+c$
$=(x+1)[Q(x)(x^2+1)+a(x-1)+b]+a-b+c$
Do đó $f(x)$ chia $x+1$ có dư là $a-b+c$
$\Rightarrow a-b+c=4(*)$
Lại có:
$f(x)=Q(x)(x+1)(x^2+1)+a(x^2+1)-a+bx+c$
$=(x^2+1)[Q(x)(x+1)+a]+bx+(c-a)$
$\Rightarrow f(x)$ khi chia $x^2+1$ có dư là $bx+(c-a)$
$\Rightarrow bx+(c-a)=2x+3$
$\Rightarrow b=2; c-a=3(**)$
Từ $(*);(**)\Rightarrow a=\frac{3}{2}; b=2; c=\frac{9}{2}$