Dúng phương pháp xét giá trị riêng
Gọi dư là \(ax+b\)
Ta có: \(F\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b\)
Do đẳng thức đúng với mọi x nên lần lượt thử \(x=1;x=-1\)
Với x = 1 thay vào đc:
\(51=a+b\) (1)
Với x = -1 thay vào đc:
\(1=-a+b\) (2)
(1) và (2) suy ra x = 25; y = 26
Vậy dư là 25x+26
Vì đa thức chia là đa thức bậc 2 nên đa thức dư sẽ là bậc 1
Gọi thương là \(Q\left(x\right)\)
Gọi số dư là \(R\left(x\right)=ax+b\)
\(\Rightarrow F\left(x\right)=Q\left(x\right).\left(x^2-1\right)+ax+b\)
Xét nghiệm của đa thức chia
\(x^2-1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Nên ta có hệ phương trình .
\(\left\{{}\begin{matrix}P\left(1\right)=a+b=51\\P\left(-1\right)=-a+b=1\end{matrix}\right.\)
Giải hệ ra ta được :
\(\left\{{}\begin{matrix}a=25\\b=26\end{matrix}\right.\)
Vậy đa thức dư là \(25x+26\)