Làm
Ta có: f(x) chia cho x+1 dư 1 => f(-1)=4 (1) (Định lí Bơ-du)
Ta có : f(x)chia x2+1 dư 2x+3 => f(x)= (x2+1)g(x) + 2x+3 (2)
Khi chia f(x) cho đa thức (x+1)(x2+1) bậc 3 thì dư sẽ có dạng ax2+bx+c
=> f(x)= (x+1)(x2+1)k(x)+ax2+bx+c (4)
=> f(x)= (x+1)(x2+1)k(x) +a(x2+1)+bx+c-a
=>f(x) = (x2+1) [(x+1)(x2+1)k(x)+a] +bx+c-3 (3)
(2)(3)=> 2x+3= bx+c-a với mọi x
=> \(\left\{{}\begin{matrix}c-a=3\\b=2\end{matrix}\right.\)
(1)(4)=> a+c=6 mà c-a =3 \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{2}\\c=\frac{9}{2}\end{matrix}\right.\)
Vậy đa thức dư là \(\frac{3}{2}x^2+2x+\frac{9}{2}\)