Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thanh Hoàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 9 2019 lúc 3:32

a) Gọi F là điểm đối xứng với A qua O AF là đường kính của (O)

Ta có ACF = ABF = 90o (góc nội tiếp chắn nửa đường tròn) AC CF , AB BF

Mà BH AC, CH AB CF // BH, BF // HC

Suy ra BHCF là hình bình hành Trung điểm M của BC cũng là trung điểm của HF.

OM là đường trung bình của ∆ AHF AH = 2OM

Giang Dam
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 13:34

a: góc AMO=góc AFO=góc ANO=90 độ

=>A,M,F,O,N cùng thuộc 1 đường tròn

b: Gọi I là giao của MN với AO

=>I là trung điểm của MN

AI*AO=AM^2

Xét ΔAMH và ΔAFM có

góc AMH=góc AFM

góc MAH chung

=>ΔAMH đồng dạng với ΔAFM

=>AH*AF=AI*AO

=>góc AHI=góc AOF

=>OFHI nội tiếp

=>M,N,H thẳng hàng

Nguyễn Hồ NHư Ý
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 13:54

a) Xét tứ giác OCDB có 

\(\widehat{OBD}+\widehat{OBC}=180^0\)

Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Nguyễn Hoàng Khải
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2023 lúc 13:45

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD vuông góc AB

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC vuông góc CD

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔHDA có

I,O lần lượt là trung điểm của DH,DA

=>IO là đường trung bình

=>IO//AH và IO=AH/2

=>AH=2IO

♡Trần Lệ Băng♡
Xem chi tiết
Khánh Lam
Xem chi tiết
Akai Haruma
10 tháng 2 lúc 22:07

Lời giải:
a. Ta có:

$\widehat{BNC}=\widehat{BMC}=90^0$ (góc nt chắn nửa đường tròn - cung BC)

$\Rightarrow BN\perp AC, CM\perp AB$

Tam giác $ABC$ có 2 đường cao $BN, CM$ cắt nhau tại $H$ nên $H$ là trực tâm của tam giác $ABC$.

b. Gọi $D$ là giao của $AH$ và $BC$. Do $H$ là trực tâm tam giác $ABC$ nên $AH\perp BC$ tại $D$.

Tam giác $BMC$ vuông tại $M$

$\Rightarrow$ trung tuyến $MO= \frac{BC}{2}=BO$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow BOM$ là tam giác cân tại $O$

$\Rightarrow \widehat{OMB}=\widehat{OBM}=90^0-\widehat{BCM}$

$=90^0-\widehat{DCH}=\widehat{MHA}=\widehat{MHE}(1)$

$CM\perp AB$ nên $AMH$ là tam giác vuông tại $M$

$\Rightarrow ME=\frac{AH}{2}=EH$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow MEH$ cân tại $E$

$\Rightarrow \widehat{MHE}=\widehat{EMH}(2)$

Từ $(1); (2)\Rightarrow \widehat{OMB}=\widehat{EMH}$

$\Rightarrow \widehat{OMB}+\widehat{OMC}=\widehat{EMH}+\widehat{OMC}$

$\Rightarrow \widehat{BMC}=\widehat{EMO}$

$\Rightarrow \widehat{EMO}=90^0$

$\Rightarrow EM\perp MO$ nên $EM$ là tiếp tuyến $(O)$
c.

Ta có:

$EM=\frac{AH}{2}=EN$

$OM=ON$

$\Rightarrow EO$ là trung trực của $MN$

Gọi $T$ là giao điểm $EO, MN$ thì $EO\perp MN$ tại $T$ và $T$ là trung điểm $MN$.

Xét tam giác $EMO$ vuông tại $M$ có $MT\perp EO$ thì:

$ME.MO = MT.EO = \frac{MN}{2}.EO$

$\Rightarrow 2ME.MO = MN.EO$

 

 

Akai Haruma
10 tháng 2 lúc 22:08

Hình vẽ:

Phương Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
8 tháng 8 2023 lúc 14:37

A B C H M O E I G K

a/

O là giao 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tg ABC

Nối AO cắt đường trong (O) tại E ta có

\(\widehat{ABE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow BE\perp AB\)

H là trực tâm tg ABC \(\Rightarrow CH\perp AB\)

=> BE//CH (1)

Ta có

\(\widehat{ACE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow CE\perp AC\)

H là trực tâm tg ABC \(\Rightarrow BH\perp AC\)

=> CE//BH (2)

Từ (1) và (2) => BHCE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Do trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường mà G là trọng tâm tg ABC => M là trung điểm BC => M cũng là trung điểm của HE => MH = ME

Xét tg AHE có

MH=ME (cmt)

OA=OE

=> OM là đường trung bình của tg AHE \(\Rightarrow OM=\dfrac{1}{2}AH\) 

b/ 

Ta có M là trung điểm của BC (cmt) => OM là đường trung trực của BC \(OM\perp BC\)

\(AH\perp BC\)

=> OM//AH 

Xét tg AGH có

IA=IG (gt)

KH=KG (gt)

=> IK là đường trung bình của tg AGK => IK//AH mà OM//AH (cmt)

=> IK//OM \(\Rightarrow\widehat{GIK}=\widehat{GMO}\) (góc so le trong) (4)

IK là đường trung bình của tg AGH \(\Rightarrow IK=\dfrac{1}{2}AH\) mà \(OM=\dfrac{1}{2}AH\) (cmt) => IK = OM (5)

G là trong tâm tg ABC => \(GM=\dfrac{1}{2}AG\) mà \(IG=\dfrac{1}{2}AG\)

=> IG=GM (6)

Từ (4) (5) (5) => tg IGK = tg MGO (c.g.c)

c/

Nối H với O cắt AM tại G' Xét tg AHE

MH=ME (cmt) => AM là trung tuyến của tg AHE

OA=OE => HO là trung tuyến của tg AHE

=> G' là trọng tâm của tg AHE \(\Rightarrow G'M=\dfrac{1}{3}AM\)

Mà G là trọng tâm của tg ABC \(\Rightarrow GM=\dfrac{1}{3}AM\)

\(\Rightarrow G'\equiv G\) => H; G; O thẳng hàng

d/

Do G là trọng tâm của tg AHE => GH=2GO

 

 

 

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 6 2017 lúc 8:02

b) Vì AHIO là hình bình hành nên OI = AH = 2OM

Gọi P là trung điểm OC PJ là trung trực OC PJ OC.

Có OM là trung trực BC OM BC. Suy ra

Δ O J P ~ Δ O C M ( g . g ) ⇒ O J O C = O P O M ⇒ O J . O M = O C . O P ⇒ O J .2 O M = O C .2 O P ⇒ O J . O I = O C . O C = R 2