Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang
Xem chi tiết
Nguyễn Văn Vinh
6 tháng 11 2016 lúc 20:50

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

Thiếu Gia Họ Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 14:16

\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)

Kudora Sera
Xem chi tiết
trần đức mạnh
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Khách vãng lai đã xóa
trần đức mạnh
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Khách vãng lai đã xóa
Unirverse Sky
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Khách vãng lai đã xóa
nguyễn minh thu
Xem chi tiết
GV
4 tháng 8 2014 lúc 7:36

a) Vì |1/2 - x| lớn hơn hoặc bằng 0

nên A lớn hơn hoặc bằng 3/5. Vậy A nhỏ nhất = 3/5 khi 1/2 - x = 0, hay là x = 1/2

b) Vì |2x + 2/3| lớn hơn hoặc bằng 0

nên B nhỏ hơn hoặc bằng 2/3. B lớn nhất = 2/3 khi 2x + 2/3 = 0, hay x = -2/6.

phạm thị khánh thy
9 tháng 11 2014 lúc 22:09

a) Vì |1/2 - x| lớn hơn hoặc bằng 0

nên A lớn hơn hoặc bằng 3/5. Vậy A nhỏ nhất = 3/5 khi 1/2 - x = 0, hay là x = 1/2

b) Vì |2x + 2/3| lớn hơn hoặc bằng 0

nên B nhỏ hơn hoặc bằng 2/3. B lớn nhất = 2/3 khi 2x + 2/3 = 0, hay x = -2/6.

NGUYỄN PHAN KIỀU PHÚC
20 tháng 12 2014 lúc 20:52

a) Vì |1/2 - x| lớn hơn hoặc bằng 0

nên A lớn hơn hoặc bằng 3/5. Vậy A nhỏ nhất = 3/5 khi 1/2 - x = 0, hay là x = 1/2

b) Vì |2x + 2/3| lớn hơn hoặc bằng 0

nên B nhỏ hơn hoặc bằng 2/3. B lớn nhất = 2/3 khi 2x + 2/3 = 0, hay x = -2/6.

 

Trần Trọng Quang
Xem chi tiết
Yen Nhi
30 tháng 6 2021 lúc 21:50

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 21:56

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 22:03

\(5.\)

\(x^2-48x+65\)

\(=\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)

Vậy \(Max=-511\)khi \(x=24\)

Khách vãng lai đã xóa
nguyễn văn hữu
Xem chi tiết
Phạm Khánh Vy
Xem chi tiết
Nguyễn Đức Trí
11 tháng 7 2023 lúc 22:00

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

 

Dũng Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 22:18

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

Trần Trung Đức
Xem chi tiết
Laura
17 tháng 1 2020 lúc 12:21

\(a)A=2+|x+3|\)

Vì \(|x+3|\ge0\)\(\forall x\)

\(\Rightarrow2+|x+3|\ge2\)\(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy \(Max_A=2\Leftrightarrow x=-3\)

\(b)B=\frac{3}{2}+|2x-1|\)

Vì \(|2x-1|\ge0\)\(\forall x\)

\(\Rightarrow\frac{3}{2}+|2x-1|\ge\frac{3}{2}\)\(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Max_B=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)

Khách vãng lai đã xóa