Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinh Lê Thành
Xem chi tiết
Phạm Thị Thùy Linh
31 tháng 8 2019 lúc 21:57

\(S=\sqrt{x-2}+\sqrt{y-3}\)

\(\Rightarrow S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\)

\(\Rightarrow S^2=x-2+2\sqrt{\left(x-2\right)\left(y-3\right)}+y-3\)

\(\Rightarrow S^2=x+y-5+2\sqrt{\left(x-2\right)\left(y-3\right)}\)

\(\Rightarrow S^2=1+2\sqrt{\left(x-2\right)\left(y-3\right)}\)

Vì \(2\sqrt{\left(x-2\right)\left(y-3\right)}\ge0\)

\(\Rightarrow1+2\sqrt{\left(x-2\right)\left(y-3\right)}\ge1\)

\(\Rightarrow S^2\ge1\Leftrightarrow\orbr{\begin{cases}S\ge1\left(tm\right)\\S\le-1\left(ktm\right)\end{cases}}\)

\(\Rightarrow S_{min}=1\Leftrightarrow2\sqrt{\left(x-2\right)\left(y-3\right)}=0\)

TH1 : \(x-2=0\Leftrightarrow x=2\Rightarrow y=6-2=4\)

Th2 : \(y-3=0\Rightarrow y=3\Rightarrow x=6-3=3\)

Vậy \(S_{min}=1\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)hoặc \(x=y=3\)

Đỗ Thùy Dung
31 tháng 8 2019 lúc 23:32

Áp dụng bđt Bu-nhi-a-cốp-xki ta có

\(S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\le\left(1+1\right)\left(x+y-5\right)=2\left(6-5\right)=2\)(vì \(x+y=6\) )

\(\Rightarrow S^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le S\le\sqrt{2}\)

\(\Rightarrow minS=-\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{\sqrt{x-2}}{1}=\frac{\sqrt{y-3}}{1}\\x+y=6\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2,5\\y=3,5\end{cases}}\)

phan tuấn anh
Xem chi tiết
Nguyễn Nhật Minh
31 tháng 12 2015 lúc 18:00

\(A>0\)

\(A^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\le\left(1+1\right)\left(x-2+y-3\right)=2.\left(6-5\right)=2\)

Min A =2 khi x -2 = y -3 => x -y = -1 và x+y =6

                      => x =5/2 ; y = 7/2 

phan tuấn anh
31 tháng 12 2015 lúc 17:58

đừng có trả lời liều câu hỏi tương tụ ko có đâu mà hình như bài này bình phương lên thì phải

phan tuấn anh
31 tháng 12 2015 lúc 18:01

biết ngay là bình phương mà

em ơi
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 2021 lúc 17:07

\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)

\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

\(\Rightarrow x-y=1\Rightarrow P=1\)

\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)

\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)

\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)

Xem chi tiết
Khổng Thị Thanh Thanh
30 tháng 7 2021 lúc 15:18

xin lỗi 

mình không làm được

Khách vãng lai đã xóa
Đỗ Minh Châu
30 tháng 7 2021 lúc 15:29

a, 67/57

b,Q =678/78 n/t

c, s = a+h

Khách vãng lai đã xóa
Nguyễn Hương Ly
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
KP9
2 tháng 8 2020 lúc 7:07

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

Khách vãng lai đã xóa
Lê Tài Bảo Châu
2 tháng 8 2020 lúc 14:49

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

Khách vãng lai đã xóa
Lê Tài Bảo Châu
2 tháng 8 2020 lúc 14:49

toàn 1 lũ hãm điểm

Khách vãng lai đã xóa
Nguyễn Thùy Chi
Xem chi tiết
bach nhac lam
9 tháng 2 2020 lúc 18:40

+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)

\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)

\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)

\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)

\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)

max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)

+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)

\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)

\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)

\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)

Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)

Khách vãng lai đã xóa
Nàng tiên cá
Xem chi tiết

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

kudo shinichi
30 tháng 7 2019 lúc 19:04

\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y.\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(\Leftrightarrow A=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\right]:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)

\(\Leftrightarrow A=\frac{2\sqrt{xy}+x+y}{xy}:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)

\(\Leftrightarrow A=\frac{\sqrt{xy}\left(x+y\right)}{xy\left(\sqrt{x}+\sqrt{y}\right)}\)

\(\Leftrightarrow A=\frac{\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)

sai sót chỗ nào chỉ cho mk nhé. ý kia chốc nx làm nốt

Trần Minh Tâm
Xem chi tiết
Nguyễn Trâm
27 tháng 8 2017 lúc 20:32

Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\) = l x+2 l + l 2-x l \(\ge\) l x+2+2-x l = l 4 l = 4

Dấu " = " xảy ra khi và chỉ khi

(x+2)(2-x) \(\ge\)0

<=> x+2 \(\ge\)0 và 2-x \(\ge\) 0

hoặc x+2 \(\le\)0 và 2-x \(\le\)0

<=> x \(\ge\)-2 và x\(\le\)2

hoặc x\(\le\)-2 và x\(\ge\)2

<=> -2\(\le\)x\(\le\)2

vậy GTNN của Q = 4 khi -2\(\le\)x\(\le\)2

Trần Minh Tâm
27 tháng 8 2017 lúc 10:23

câu b chỗ x - 3 sửa lại là y - 3