ĐKXĐ : \(x\ge2;y\ge3\)
\(\Rightarrow S=\sqrt{x-2}+\sqrt{y-3}\ge1\)
Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=2;y=4\\y=3;x=3\end{cases}}\)
ĐKXĐ : \(x\ge2;y\ge3\)
\(\Rightarrow S=\sqrt{x-2}+\sqrt{y-3}\ge1\)
Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=2;y=4\\y=3;x=3\end{cases}}\)
Tìm GTNN của \(S=\sqrt{x-2}+\sqrt{y-3}\)
biết x+y=6
Tìm GTNN của A=\(\sqrt{x-2}+\sqrt{y-3}\) biết x+y=6
Tìm GTNN của biểu thức biết x,y không âm và \(x+y=2\):
a) \(P=\sqrt{x}+\sqrt{y}\)
b)\(Q=\sqrt[3]{x}+\sqrt[3]{y}\)
c)\(S=\sqrt[n]{x}+\sqrt[n]{y}\)
Cho biểu thức:
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a, Rút gọn A
b, Biết xy=6. Tìm giá trị của x,y để A có GTNN
Bài 1: Cho \(x,y>0\)thỏa mãn \(x^4+y^4=4\).Tìm GTNN \(E=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 2: Tìm GTNN và GTLN của\(A=\sqrt{3+x}+\sqrt{6-x}\left(-3\le x\le6\right)\)
Bài 3:Tìm GTLN của \(A=\sqrt{x+1}+\sqrt{y+1}\)biết\(\hept{\begin{cases}x,y\ge-1\\x+y=2\end{cases}}\)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
Cho x,y là các số thực thỏa mãn điều kiện:\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\).Tìm GTNN của biểu thức:
\(S=x^2+3xy-2y^2-8y+5\)
cho x,y>0.Tìm GTNN của A=\(\sqrt{\dfrac{x^3}{x^3+8y^2}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
Tìm GTLN, GTNN của biểu thức S, biết S = \(x\sqrt{x}+y\sqrt{y}\) .Với \(\sqrt{x}+\sqrt{y}\)=1
Mong mấy bạn giải kĩ càng dùm mình với nha, mình đang cần gấp lắm đây.!!!@@~~
Bạn nào giải dùm mình được thì mình xin cảm ơn trước nha =)) <3