cho a,b>0 thoả mãn 3a+5b= 12
tìm GTLN của M= ab
cho a,b là các số nguyên dương thoả mãn 3a+5b=12. tìm GTLN của P=ab
cho a,b>0 thỏa mãn 3a+5b=12.tìm GTLN của A=ab
Cho a,b là 2 số duơng thoả mãn điều kiện 3a+5b bằng 12 hãy tìm giá trị lớn nhất của biểu thức D bằng a.b
kết quả của mk là a.b=0 \(\Leftrightarrow a=4;b=0\)
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Áp dụng BĐT Côsi cho 2 số dương, ta có:
\(3a+5b=12\ge2\sqrt{3a.5b}=2\sqrt{15ab}\)
\(\Leftrightarrow\sqrt{15ab}\le6\)
\(\Leftrightarrow ab\le\dfrac{36}{15}\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Theo BĐT cosi ta có:
\(3a+5b\ge2\sqrt{3a\cdot5b}\)
\(\Leftrightarrow3a+5b\ge2\sqrt{15ab}\)
\(\Leftrightarrow12\ge2\sqrt{15ab}\)
\(\Leftrightarrow\sqrt{15ab}\le\dfrac{12}{2}\)
\(\Leftrightarrow\sqrt{15ab}\le6\)
\(\Leftrightarrow15ab\le36\)
\(\Leftrightarrow ab\le\dfrac{36}{15}\)
\(\Leftrightarrow ab\le\dfrac{12}{5}\)
\(\Rightarrow P\le\dfrac{12}{5}\)
Vậy: \(P_{max}=\dfrac{12}{5}\)
a/
Cho a-b=1. Tìm GTNN của A = a3 - b3 - ab
b/
Cho 3a + 5b = 12 . Tìm GTLN của B = ab
a)\(A=a^3-b^3-ab=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)
\(A=a^2+ab+b^2-ab=a^2+b^2\ge0\)
\(minA=0\Leftrightarrow a=b=0\)
b)\(3a+5b=12\Leftrightarrow3a=12-5b\)
\(3B=3ab=\left(12-5b\right).b=-5b^2+12b\)
\(3B=-5b^2+12b-7,2+7,2=-\frac{1}{5}\left(5b-6\right)^2+7,2\le7,2\) \(\Leftrightarrow B\le2,4\)
\(maxB=2,4\Leftrightarrow b=1,2\Leftrightarrow a=2\)
Cho a,b,c > 0 thoả mãn: a+2b+3c =6. Tìm GTLN của biểu thức sau:
P= abc+ab+bc+ca-b-2c
Tìm GTLN của biểu thức: P= abc+ab+bc+ca-b-2c
Với a,b,c > 0 thoả mãn: a+2b+3c=6
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
\(12=3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{36}{15}=\frac{12}{5}\)
Dấu " = " xảy ra khi \(3a=5b;3a+5b=12\Leftrightarrow a=2;b=\frac{6}{5}\)
Nguồn: Mr Lazy