Cho a = 111.......1 ( 1000 chữ số 1 )
b = 111.......1 ( 2020 chữ số 1 )
Chứng minh : ab - 1 ⋮ 3 .
Cho số A=111...111 (2019 chữ số 1) và B= 1000...005(2018 chữ số 0).Chứng minh rằng A*B+1 là 1 số chính phương.
Lời giải:
Đặt \(\underbrace{111...1}_{2019}=a\Rightarrow 9a+1=1\underbrace{00...000}_{2019}\)
Do đó:
\(AB+1=\underbrace{111....1}_{2019}(1\underbrace{000...00}_{2019}+5)+1\)
\(=a(9a+1+5)+1=9a^2+6a+1=(3a+1)^2\)
Vậy $AB+1$ là một số chính phương.
Cho a = 111...11 ( n chữ số 1 ), b = 1000....0 (n-2 chữ số 1)
Cm ab+4 là số chính phương
Cho : A=111...1 ( 2 n chữ số 1) ; B=111...1 ( n+1 chữ số 1) ; C=666....66 ( n chữ số 6)
Chứng minh rằng A+B+C+8 là 1 số chính phương.
trả lời chỉ để lấy tích thời mọi người tích giùm hihi
Cho a =1111..111 (n chữ số 1) ; b = 100....05( n-1 chữ số 0)
Chứng minh rằng C= ab+1 là một số chính phương
Cho a = 111...11 ( n chữ số 1 ), b = 1000....0 (n-2 chữ số 1)
Cm ab+4 là số chính phương
Bài 1: Rút gọn và tính giá trị của biểu thức:
D= x^5- 36.x^4+ 37.x^3- 69.x^2- 34.x + 15 tại x= 35
Bài 2: Tìm x, biết:
b) ( 2x+3 ). ( x-4 ) + ( x-5 ). ( x-2 )= ( 3x-5 ). ( x-4 )
c) ( 8x-3 ). ( 3x+2 )- ( 4x+ 7 ). ( x+4 )= ( 2x+1 ). ( 5x-1 )
Bài 3: Cho a= 111...11 ( 1000 chữ số 1 )
b= 111...11 ( 2017 chữ số 1 )
Chứng minh rằng: ab-1 chia hết cho 3
Bài 2:
b: \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
=>-12x-2=-17x+20
=>5x=22
hay x=22/5
c: \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+16x-9x-6-\left(4x^2+16x+7x+28\right)=10x^2-2x+5x-1\)
\(\Leftrightarrow24x^2+7x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\text{Δ}=\left(-19\right)^2-4\cdot10\cdot\left(-33\right)=1681>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{19-41}{20}=\dfrac{-22}{20}=\dfrac{-11}{10}\\x_2=\dfrac{19+41}{20}=3\end{matrix}\right.\)
bài 1: cho biết các số tự nhiên a và 6a có tổng các chữ số giống nhau.. chứng minh rằng a chia hết cho 9
bài 2: chứng minh rằng với mọi số tự nhiên n ta có:
a) n. ( n+2) . (n+7) chia hết cho 3
b) 5^n -1 chia hết cho 4
c)n^2+n.5 không chia hết cho 7
bài 3:chứng minh rằng số 111....111 +8n chia hết cho 9( số 111...111 có n chữ số 1)
Bài 1: Rút gọn và tính giá trị của biểu thức:
D= x^5- 36.x^4+ 37.x^3- 69.x^2- 34.x + 15 tại x= 35
Bài 2: Tìm x, biết:
b) ( 2x+3 ). ( x-4 ) + ( x-5 ). ( x-2 )= ( 3x-5 ). ( x-4 )
c) ( 8x-3 ). ( 3x+2 )- ( 4x+ 7 ). ( x+4 )= ( 2x+1 ). ( 5x-1 )
Bài 3: Cho a= 111...11 ( 1000 chữ số 1 )
b= 111...11 ( 2017 chữ số 1 )
Chứng minh rằng: ab-1 chia hết cho 3
Bài 2:
b)\((2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)\)
\(\Leftrightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow5x=22\Rightarrow x=\frac{22}{5}\)
c)\((8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)\)
\(\Leftrightarrow24x^2+7x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Leftrightarrow\left(x-3\right)\left(10x+11\right)=0\)
Suy ra x=3;x=-11/10
1) Chứng minh: x-x2-3<0 với mọi x
2) Cho a=111...1(2n chữ số 1); b=444...4 (n chữ số 4). Chứng minh a+b+1 là 1 số chính phương