Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Hoàng
Xem chi tiết
Nguyễn Trần Hoàng
Xem chi tiết
Dung Đặng Phương
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Thành Bình
22 tháng 4 2019 lúc 21:53

\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)

áp dụng bđt AM-GM , a,b> 0

\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)

Lê Thuy Linh
Xem chi tiết
Hoàng Thị Ánh Phương
7 tháng 3 2020 lúc 16:00

Ta sẽ chứng minh :

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) với x, y > 0

Thật vậy : \(x+y+z\ge3\sqrt[3]{xyz}\)( bđt Cô - si )

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\) ( bđt Cô - si )

\(\Rightarrow x+y+z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( Dấu " = " \(\Leftrightarrow x=y=z\) )

Ta có :

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

( Dấu " = " xay ra khi a=b)

Tương tự ta cũng có :

\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\) ( Dấu " = " xảy ra khi b=c)

\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\) ( Dấu " = " xay ra khi c = a )

\(VT=\sum_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

Dấu " = " xay ra khi \(a=b=c=\frac{2}{3}\)

Chúc bạn học tốt !!

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 3 2020 lúc 15:32

\(\frac{1}{\sqrt{4a^2+2ab+b^2+a^2+b^2}}\le\frac{1}{\sqrt{4a^2+2ab+b^2+2ab}}=\frac{1}{\sqrt{\left(2a+b\right)^2}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow VT\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}+\frac{2}{b}+\frac{1}{c}+\frac{2}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)

Khách vãng lai đã xóa
minh nguyen
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2019 lúc 21:50

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế với vế:

\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)

Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)

Nguyễn Hữu Khôi
Xem chi tiết
Nguyễn Hữu Khôi
30 tháng 8 2021 lúc 18:15

B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc

Khách vãng lai đã xóa
Nguyễn Hữu Khôi
31 tháng 8 2021 lúc 17:44

Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.

Khách vãng lai đã xóa
Nguyễn Anh Dũng An
Xem chi tiết
kudo shinichi
17 tháng 12 2018 lúc 16:47

ĐK: a;b>0

Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{\left(1+1\right)^2}{2ab+a^2+b^2}=\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)

                                                                                             đpcm