Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Trà

Cho a, b, c là các số thực dương thoả mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le2\). Chứng minh rằng: \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{2}{3}\)

Nguyễn Việt Lâm
4 tháng 3 2019 lúc 21:50

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế với vế:

\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)

Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)


Các câu hỏi tương tự
Hoàng Thị Hồi
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Soul Kenji
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
CAO Thị Thùy Linh
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Vương Thiên Nhi
Xem chi tiết
Lê Đình Quân
Xem chi tiết