Cho đẳng thức : \(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}+\frac{a^2+b^2-c^2}{2ab}=1\left(1\right)\)
Chứng minh rằng ba phân thức vế trái thì có 2 phân thức bằng +1 và một phân thức bằng -1.
Cho a , b , c > 0 Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a , b , c , d > 0 Biết \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1\)
Chứng minh rằng: \(abcd\le\frac{1}{81}\)
1) 0<a,b,c<1 và ab+bc+ca=1.find Min of:
\(M=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
2) a,b,c>0.CMR:
\(\frac{1}{\left(2a+b\right)^2}+\frac{1}{\left(2b+c\right)^2}+\frac{1}{\left(2c+a\right)^2}\ge\frac{1}{ab+bc+ca}\)
3)a,b,c>0 CMR:
\(\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\ge\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\right)\)
Giai pt : \(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}\) ( a và b là hằng )
Cho a và b là hai số dương. Chứng minh:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Cho a,b,c là các số dương thỏa mãn :a2 +2b2 < 3c2.Chứng minh : \(\frac{1}{a}\)+\(\frac{2}{b}\)>\(\frac{3}{c}\)
Cho số dương a , b , c thỏa mãn \(a+b+c=3\)
Chứng minh rằng \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a , b , c dương thỏa mãn \(a+b+c\le\sqrt{3}\)
Chứng minh rằng \(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{3}{2}\)